{"title":"An in vitro cellular model for measuring the impact of thermal stress on Florida reef sponges.","authors":"Megan Conkling, Tobin Hindle, Zhixiao Xie, Weibo Liu, Timothy Moore, Shirley A Pomponi","doi":"10.1007/s11626-025-01034-1","DOIUrl":null,"url":null,"abstract":"<p><p>Coral reefs are threatened by recurrent mortality incidents in their native habitats brought on by natural and anthropogenic stressors. Elevated temperature has been indicated as a major causing factor. Although ongoing research is focused on corals, sponges are an important benthic organism on coral reefs and are often overlooked. An accurate and standardized method is needed to determine the environmental limits and thresholds of sponges commonly found on coral reefs. We established an in vitro sponge cell model and evaluated the effect of elevated temperatures on primary cell cultures of five common Florida reef sponges-Agelas clathrodes, Aplysina fulva, Cliona varians, Geodia neptuni, and Xestospongia muta. Analysis of the results revealed that the impact of increased temperatures had no significant effect at the cellular level, but there are changes at the molecular level. Shifts in the sponges' transcriptomic profiles induced by increased temperatures, trigger processes related to signal transduction, apoptosis, and cell repair pathways. Further elevation of temperature corresponding to local extremes activated the immune response and programmed cell death. The results of the present study are based on both cellular and molecular data obtained from the in vitro cell model which highlight the minimal response of all five species to thermal stress, providing an insight into the mechanisms involved in the adaptive process. Furthermore, they suggest a resilience of these sponges to the current thermal extremes, but a combination of factors could still lead to a loss of sponges on reefs. This study forms the basis for use of in vitro sponge cell models to evaluate other environmental parameters and stressors on additional sponge species.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Vitro Cellular & Developmental Biology. Animal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11626-025-01034-1","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Coral reefs are threatened by recurrent mortality incidents in their native habitats brought on by natural and anthropogenic stressors. Elevated temperature has been indicated as a major causing factor. Although ongoing research is focused on corals, sponges are an important benthic organism on coral reefs and are often overlooked. An accurate and standardized method is needed to determine the environmental limits and thresholds of sponges commonly found on coral reefs. We established an in vitro sponge cell model and evaluated the effect of elevated temperatures on primary cell cultures of five common Florida reef sponges-Agelas clathrodes, Aplysina fulva, Cliona varians, Geodia neptuni, and Xestospongia muta. Analysis of the results revealed that the impact of increased temperatures had no significant effect at the cellular level, but there are changes at the molecular level. Shifts in the sponges' transcriptomic profiles induced by increased temperatures, trigger processes related to signal transduction, apoptosis, and cell repair pathways. Further elevation of temperature corresponding to local extremes activated the immune response and programmed cell death. The results of the present study are based on both cellular and molecular data obtained from the in vitro cell model which highlight the minimal response of all five species to thermal stress, providing an insight into the mechanisms involved in the adaptive process. Furthermore, they suggest a resilience of these sponges to the current thermal extremes, but a combination of factors could still lead to a loss of sponges on reefs. This study forms the basis for use of in vitro sponge cell models to evaluate other environmental parameters and stressors on additional sponge species.
期刊介绍:
In Vitro Cellular & Developmental Biology - Animal is a journal of the Society for In Vitro Biology (SIVB). Original manuscripts reporting results of research in cellular, molecular, and developmental biology that employ or are relevant to organs, tissue, tumors, and cells in vitro will be considered for publication. Topics covered include:
Biotechnology;
Cell and Tissue Models;
Cell Growth/Differentiation/Apoptosis;
Cellular Pathology/Virology;
Cytokines/Growth Factors/Adhesion Factors;
Establishment of Cell Lines;
Signal Transduction;
Stem Cells;
Toxicology/Chemical Carcinogenesis;
Product Applications.