Changqi Wu, Raheel Munir, Fangfang Li, Pingfang Li, Yi Cai, Kai Shi
{"title":"From Biosynthesis to Signaling: Unveiling the Multifaceted Roles of Phytosulfokine Peptide in Plants.","authors":"Changqi Wu, Raheel Munir, Fangfang Li, Pingfang Li, Yi Cai, Kai Shi","doi":"10.1093/jxb/eraf230","DOIUrl":null,"url":null,"abstract":"<p><p>Phytosulfokine (PSK) is a secreted peptide that plays a pivotal role in regulating plant growth, development, and environmental adaptability. PSK biosynthesis begins with a preproprotein precursor that undergoes sulfation by tyrosylprotein sulfotransferase in the cis-Golgi apparatus, followed by proteolytic cleavage by subtilases in the apoplast to yield the mature PSK. This mature peptide is recognized by membrane-bound leucine-rich repeat receptor kinases, known as PSK receptors (PSKRs), which subsequently activate diverse signaling cascades, including cGMP-dependent signaling, phosphorylation events, Ca2+ signaling, MAPK pathways, and transcriptional regulation. This review consolidates recent advances in PSK biosynthesis, biological functions, signaling mechanisms, and crosstalk with other plant hormones. By summarizing these insights, we aim to provide a theoretical framework for developing PSK-based strategies to enhance crop resilience and productivity in response to environmental challenges.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/eraf230","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Phytosulfokine (PSK) is a secreted peptide that plays a pivotal role in regulating plant growth, development, and environmental adaptability. PSK biosynthesis begins with a preproprotein precursor that undergoes sulfation by tyrosylprotein sulfotransferase in the cis-Golgi apparatus, followed by proteolytic cleavage by subtilases in the apoplast to yield the mature PSK. This mature peptide is recognized by membrane-bound leucine-rich repeat receptor kinases, known as PSK receptors (PSKRs), which subsequently activate diverse signaling cascades, including cGMP-dependent signaling, phosphorylation events, Ca2+ signaling, MAPK pathways, and transcriptional regulation. This review consolidates recent advances in PSK biosynthesis, biological functions, signaling mechanisms, and crosstalk with other plant hormones. By summarizing these insights, we aim to provide a theoretical framework for developing PSK-based strategies to enhance crop resilience and productivity in response to environmental challenges.
期刊介绍:
The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology.
Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.