{"title":"Immobilization management of acute phase increases healing ligament strength.","authors":"Chiharu Takasu, Sora Kawabata, Hidenobu Terada, Takuma Kojima, Yuri Morishita, Yuichiro Oka, Kiyomi Takayanagi, Naohiko Kanemura, Kenji Murata","doi":"10.1007/s00441-025-03983-1","DOIUrl":null,"url":null,"abstract":"<p><p>Conservative treatment of the anterior cruciate ligament (ACL) is important for restoring functional activity and preventing secondary degeneration. However, the molecular mechanisms underlying ligament immobilization and its precise role in the healing process remain poorly understood. In this study, we investigated the effect of immobilization on the strength of the healed ACL during acute management. We performed surgery to heal the ACL of rats and immobilized the knees using Kirschner wires. The group in which only the surgery to promote ACL healing was performed was designated as the controlled anterior tibial instability group, whereas the group that underwent both surgery and immobilization was designated as the immobilization (IMM) group. After 1-2 weeks of immobilization, histological analyses using hematoxylin-eosin staining and immunohistochemical evaluation of collagen types I and III expression were performed. A comprehensive genetic analysis in the acute phase was performed via RNA sequencing. Furthermore, fibroblasts derived from rat ACL were used to recapitulate inflammation with interleukin-1β, and its effect on elongation stress (110%) was investigated using polymerase chain reaction. Joint immobilization for 2 weeks postoperatively increased the mechanical strength of the conservatively connected ligaments. Stretch stimulation of fibroblasts with interleukin-1β also decreased the expression of the extracellular matrix. Furthermore, bioinformatics analyses identified differentially expressed genes associated with the healing process in fixed versus unfixed ligaments. The results demonstrate that acute-phase immobilization, defined as fixation for 2 weeks following injury, enhances ligament strength by promoting extracellular matrix synthesis and organized regeneration, providing novel insights into optimizing conservative ACL therapy.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell and Tissue Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00441-025-03983-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Conservative treatment of the anterior cruciate ligament (ACL) is important for restoring functional activity and preventing secondary degeneration. However, the molecular mechanisms underlying ligament immobilization and its precise role in the healing process remain poorly understood. In this study, we investigated the effect of immobilization on the strength of the healed ACL during acute management. We performed surgery to heal the ACL of rats and immobilized the knees using Kirschner wires. The group in which only the surgery to promote ACL healing was performed was designated as the controlled anterior tibial instability group, whereas the group that underwent both surgery and immobilization was designated as the immobilization (IMM) group. After 1-2 weeks of immobilization, histological analyses using hematoxylin-eosin staining and immunohistochemical evaluation of collagen types I and III expression were performed. A comprehensive genetic analysis in the acute phase was performed via RNA sequencing. Furthermore, fibroblasts derived from rat ACL were used to recapitulate inflammation with interleukin-1β, and its effect on elongation stress (110%) was investigated using polymerase chain reaction. Joint immobilization for 2 weeks postoperatively increased the mechanical strength of the conservatively connected ligaments. Stretch stimulation of fibroblasts with interleukin-1β also decreased the expression of the extracellular matrix. Furthermore, bioinformatics analyses identified differentially expressed genes associated with the healing process in fixed versus unfixed ligaments. The results demonstrate that acute-phase immobilization, defined as fixation for 2 weeks following injury, enhances ligament strength by promoting extracellular matrix synthesis and organized regeneration, providing novel insights into optimizing conservative ACL therapy.
期刊介绍:
The journal publishes regular articles and reviews in the areas of molecular, cell, and supracellular biology. In particular, the journal intends to provide a forum for publishing data that analyze the supracellular, integrative actions of gene products and their impact on the formation of tissue structure and function. Submission of papers with an emphasis on structure-function relationships as revealed by recombinant molecular technologies is especially encouraged. Areas of research with a long-standing tradition of publishing in Cell & Tissue Research include:
- neurobiology
- neuroendocrinology
- endocrinology
- reproductive biology
- skeletal and immune systems
- development
- stem cells
- muscle biology.