Na Ri Choi, Woo-Gyun Choi, Joon Park, Yun Tai Kim, Joo Hyun Nam, Byung Joo Kim
{"title":"<i>Scutellaria baicalensis</i> extracts alleviate zymosan-induced irritable bowel syndrome symptoms by modulating inflammation and ion channel activity.","authors":"Na Ri Choi, Woo-Gyun Choi, Joon Park, Yun Tai Kim, Joo Hyun Nam, Byung Joo Kim","doi":"10.1080/19768354.2025.2507327","DOIUrl":null,"url":null,"abstract":"<p><p><i>Scutellaria baicalensis</i> extracts (SBE) have demonstrated potential therapeutic effects against gastrointestinal disorders. This study evaluated the effects of SBE on zymosan-induced irritable bowel syndrome (IBS) symptoms and the underlying mechanisms involved. The major components of SBE, baicalin and baicalein, were quantified using high-performance liquid chromatography. SBE inhibited pacemaker potentials in interstitial cells of Cajal in vitro, with an IC₅₀ value of 27.48 μg/mL. In an animal model of IBS, SBE administration restored colonic length, weight, and stool consistency. Furthermore, SBE reduced tumor necrosis factor-α expression and alleviated pain-associated behaviors. Histological analysis revealed that SBE treatment restored normal colon tissue structure and significantly reduced inflammation. Electrophysiological recordings demonstrated that SBE inhibited the activity of transient receptor potential (TRP) channels, including TRPV1, TRPV4 and TRPA1, as well as voltage-gated sodium channels (NaV1.5), which are associated with visceral pain hypersensitivity. These findings suggest that SBE has therapeutic potential, making it a promising candidate for the management of IBS.</p>","PeriodicalId":7804,"journal":{"name":"Animal Cells and Systems","volume":"29 1","pages":"360-371"},"PeriodicalIF":3.2000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12096662/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Cells and Systems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/19768354.2025.2507327","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Scutellaria baicalensis extracts (SBE) have demonstrated potential therapeutic effects against gastrointestinal disorders. This study evaluated the effects of SBE on zymosan-induced irritable bowel syndrome (IBS) symptoms and the underlying mechanisms involved. The major components of SBE, baicalin and baicalein, were quantified using high-performance liquid chromatography. SBE inhibited pacemaker potentials in interstitial cells of Cajal in vitro, with an IC₅₀ value of 27.48 μg/mL. In an animal model of IBS, SBE administration restored colonic length, weight, and stool consistency. Furthermore, SBE reduced tumor necrosis factor-α expression and alleviated pain-associated behaviors. Histological analysis revealed that SBE treatment restored normal colon tissue structure and significantly reduced inflammation. Electrophysiological recordings demonstrated that SBE inhibited the activity of transient receptor potential (TRP) channels, including TRPV1, TRPV4 and TRPA1, as well as voltage-gated sodium channels (NaV1.5), which are associated with visceral pain hypersensitivity. These findings suggest that SBE has therapeutic potential, making it a promising candidate for the management of IBS.
期刊介绍:
Animal Cells and Systems is the official journal of the Korean Society for Integrative Biology. This international, peer-reviewed journal publishes original papers that cover diverse aspects of biological sciences including Bioinformatics and Systems Biology, Developmental Biology, Evolution and Systematic Biology, Population Biology, & Animal Behaviour, Molecular and Cellular Biology, Neurobiology and Immunology, and Translational Medicine.