{"title":"Probabilistic exponential family inverse regression and its applications.","authors":"Daolin Pang, Ruoqing Zhu, Hongyu Zhao, Tao Wang","doi":"10.1093/biomtc/ujaf065","DOIUrl":null,"url":null,"abstract":"<p><p>Rapid advances in high-throughput sequencing technologies have led to the fast accumulation of high-dimensional data, which is harnessed for understanding the implications of various factors on human disease and health. While dimension reduction plays an essential role in high-dimensional regression and classification, existing methods often require the predictors to be continuous, making them unsuitable for discrete data, such as presence-absence records of species in community ecology and sequencing reads in single-cell studies. To identify and estimate sufficient reductions in regressions with discrete predictors, we introduce probabilistic exponential family inverse regression (PrEFIR), assuming that, given the response and a set of latent factors, the predictors follow one-parameter exponential families. We show that the low-dimensional reductions result not only from the response variable but also from the latent factors. We further extend the latent factor modeling framework to the double exponential family by including an additional parameter to account for the dispersion. This versatile framework encompasses regressions with all categorical or a mixture of categorical and continuous predictors. We propose the method of maximum hierarchical likelihood for estimation, and develop a highly parallelizable algorithm for its computation. The effectiveness of PrEFIR is demonstrated through simulation studies and real data examples.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"81 2","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujaf065","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Rapid advances in high-throughput sequencing technologies have led to the fast accumulation of high-dimensional data, which is harnessed for understanding the implications of various factors on human disease and health. While dimension reduction plays an essential role in high-dimensional regression and classification, existing methods often require the predictors to be continuous, making them unsuitable for discrete data, such as presence-absence records of species in community ecology and sequencing reads in single-cell studies. To identify and estimate sufficient reductions in regressions with discrete predictors, we introduce probabilistic exponential family inverse regression (PrEFIR), assuming that, given the response and a set of latent factors, the predictors follow one-parameter exponential families. We show that the low-dimensional reductions result not only from the response variable but also from the latent factors. We further extend the latent factor modeling framework to the double exponential family by including an additional parameter to account for the dispersion. This versatile framework encompasses regressions with all categorical or a mixture of categorical and continuous predictors. We propose the method of maximum hierarchical likelihood for estimation, and develop a highly parallelizable algorithm for its computation. The effectiveness of PrEFIR is demonstrated through simulation studies and real data examples.
期刊介绍:
The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.