Learn-As-you-GO (LAGO) trials: optimizing treatments and preventing trial failure through ongoing learning.

IF 1.7 4区 数学 Q3 BIOLOGY
Biometrics Pub Date : 2025-04-02 DOI:10.1093/biomtc/ujaf061
Ante Bing, Donna Spiegelman, Daniel Nevo, Judith J Lok
{"title":"Learn-As-you-GO (LAGO) trials: optimizing treatments and preventing trial failure through ongoing learning.","authors":"Ante Bing, Donna Spiegelman, Daniel Nevo, Judith J Lok","doi":"10.1093/biomtc/ujaf061","DOIUrl":null,"url":null,"abstract":"<p><p>It is well known that changing the intervention package while a trial is ongoing does not lead to valid inference using standard statistical methods. However, it is often necessary to adapt, tailor, or tweak a complex intervention package in public health implementation trials, especially when the intervention package does not have the desired effect. This article presents conditions under which the resulting analyses remain valid even when the intervention package is adapted while a trial is ongoing. Our results on such Learn-As-you-GO (LAGO) trials extend the theory of LAGO for binary outcomes following a logistic regression model to LAGO for continuous outcomes under flexible conditional mean models. Because the mathematical methods for binary outcomes do not apply to continuous outcomes, the theory presented in this paper is entirely new. We derive point and interval estimators of the intervention effects and ensure the validity of hypothesis tests for an overall intervention effect. We develop a confidence set for the optimal intervention package, which achieves a pre-specified mean outcome while minimizing cost, and confidence bands for the mean outcome under all intervention package compositions. This work will be useful for the design and analysis of large-scale intervention trials where the intervention package is adapted, tailored, or tweaked while the trial is ongoing.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"81 2","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12099308/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujaf061","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

It is well known that changing the intervention package while a trial is ongoing does not lead to valid inference using standard statistical methods. However, it is often necessary to adapt, tailor, or tweak a complex intervention package in public health implementation trials, especially when the intervention package does not have the desired effect. This article presents conditions under which the resulting analyses remain valid even when the intervention package is adapted while a trial is ongoing. Our results on such Learn-As-you-GO (LAGO) trials extend the theory of LAGO for binary outcomes following a logistic regression model to LAGO for continuous outcomes under flexible conditional mean models. Because the mathematical methods for binary outcomes do not apply to continuous outcomes, the theory presented in this paper is entirely new. We derive point and interval estimators of the intervention effects and ensure the validity of hypothesis tests for an overall intervention effect. We develop a confidence set for the optimal intervention package, which achieves a pre-specified mean outcome while minimizing cost, and confidence bands for the mean outcome under all intervention package compositions. This work will be useful for the design and analysis of large-scale intervention trials where the intervention package is adapted, tailored, or tweaked while the trial is ongoing.

随做随学(LAGO)试验:通过持续学习优化治疗方法,防止试验失败。
众所周知,在进行试验时改变干预方案不能使用标准统计方法得出有效的推断。然而,在公共卫生实施试验中,往往需要调整、调整或调整复杂的一揽子干预措施,特别是当一揽子干预措施没有达到预期效果时。本文提出的条件是,即使在进行试验时调整干预方案,所得到的分析仍然有效。我们在这种随学随做(LAGO)试验中的结果将LAGO理论在逻辑回归模型下的二元结果扩展到灵活条件平均模型下的连续结果的LAGO。由于二元结果的数学方法不适用于连续结果,因此本文提出的理论是全新的。我们导出了干预效果的点和区间估计量,并保证了对整体干预效果的假设检验的有效性。我们开发了一个最优干预方案的置信区间,在最小化成本的同时达到预定的平均结果,以及所有干预方案组合下的平均结果的置信区间。这项工作将有助于大规模干预试验的设计和分析,在试验进行过程中,干预方案可以进行调整、定制或调整。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biometrics
Biometrics 生物-生物学
CiteScore
2.70
自引率
5.30%
发文量
178
审稿时长
4-8 weeks
期刊介绍: The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信