Mitochondria-Targeted ROS Scavenging Natural Enzyme Cascade Nanogels for Periodontitis Treatment via Hypoxia Alleviation and Immunomodulation.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yanfen Zheng, Liuzhou Mao, Qi Wang, Haohua Hu, Bahriman Xarpidin, Zheng Luo, Yun-Long Wu
{"title":"Mitochondria-Targeted ROS Scavenging Natural Enzyme Cascade Nanogels for Periodontitis Treatment via Hypoxia Alleviation and Immunomodulation.","authors":"Yanfen Zheng, Liuzhou Mao, Qi Wang, Haohua Hu, Bahriman Xarpidin, Zheng Luo, Yun-Long Wu","doi":"10.1002/advs.202507481","DOIUrl":null,"url":null,"abstract":"<p><p>Periodontitis is a chronic inflammatory disease characterized by hypoxia, excessive oxidative stress, and immune dysregulation, leading to tissue destruction and bone resorption. Although antioxidants can reduce ROS and inflammation, most lack specificity and have a short residence time, limiting their effectiveness. Since mitochondria are the primary source of ROS, targeting mitochondrial ROS is a promising strategy for periodontitis treatment. However, this alone cannot address the complex \"ROS-inflammation-hypoxia\" cycle in periodontitis, requiring a more comprehensive approach. Here, a natural enzyme cascade nanogel (TPP-SAT) composed of triphenylphosphine (TPP), superoxide dismutase (SOD), and catalase (CAT) via in-situ polymerization is developed. TPP-SAT targets mitochondrial ROS, converting ROS (such as H<sub>2</sub>O<sub>2</sub> or ·O<sub>2</sub> <sup>-</sup>) into O<sub>2</sub> through the enzyme cascade of SOD and CAT. This alleviates hypoxia, prevents oxidative damage, and restores the balance between pro-inflammatory M1 and anti-inflammatory M2 macrophages, reducing inflammation and immune dysfunction. TPP-SAT breaks the \"ROS-inflammation-hypoxia\" cycle, inhibits alveolar bone resorption, and accelerates periodontal tissue regeneration. This approach offers a promising strategy for treating periodontitis and other chronic inflammatory diseases, with strong clinical potential.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e07481"},"PeriodicalIF":14.3000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202507481","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Periodontitis is a chronic inflammatory disease characterized by hypoxia, excessive oxidative stress, and immune dysregulation, leading to tissue destruction and bone resorption. Although antioxidants can reduce ROS and inflammation, most lack specificity and have a short residence time, limiting their effectiveness. Since mitochondria are the primary source of ROS, targeting mitochondrial ROS is a promising strategy for periodontitis treatment. However, this alone cannot address the complex "ROS-inflammation-hypoxia" cycle in periodontitis, requiring a more comprehensive approach. Here, a natural enzyme cascade nanogel (TPP-SAT) composed of triphenylphosphine (TPP), superoxide dismutase (SOD), and catalase (CAT) via in-situ polymerization is developed. TPP-SAT targets mitochondrial ROS, converting ROS (such as H2O2 or ·O2 -) into O2 through the enzyme cascade of SOD and CAT. This alleviates hypoxia, prevents oxidative damage, and restores the balance between pro-inflammatory M1 and anti-inflammatory M2 macrophages, reducing inflammation and immune dysfunction. TPP-SAT breaks the "ROS-inflammation-hypoxia" cycle, inhibits alveolar bone resorption, and accelerates periodontal tissue regeneration. This approach offers a promising strategy for treating periodontitis and other chronic inflammatory diseases, with strong clinical potential.

线粒体靶向ROS清除天然酶级联纳米凝胶通过缺氧缓解和免疫调节治疗牙周炎。
牙周炎是一种慢性炎症性疾病,以缺氧、过度氧化应激和免疫失调为特征,导致组织破坏和骨吸收。虽然抗氧化剂可以减少ROS和炎症,但大多数抗氧化剂缺乏特异性,停留时间短,限制了其有效性。由于线粒体是活性氧的主要来源,靶向线粒体活性氧是治疗牙周炎的一种很有前途的策略。然而,仅凭这一点无法解决牙周炎中复杂的“ros -炎症-缺氧”循环,需要更全面的方法。本研究通过原位聚合制备了由三苯基膦(TPP)、超氧化物歧化酶(SOD)和过氧化氢酶(CAT)组成的天然酶级联纳米凝胶(TPP- sat)。TPP-SAT靶向线粒体ROS,通过SOD和CAT的酶级联将ROS(如H2O2或·O2 -)转化为O2。这样可以缓解缺氧,防止氧化损伤,恢复促炎M1和抗炎M2巨噬细胞之间的平衡,减轻炎症和免疫功能障碍。TPP-SAT打破“ros -炎症-缺氧”循环,抑制牙槽骨吸收,加速牙周组织再生。这种方法为治疗牙周炎和其他慢性炎症性疾病提供了一种有希望的策略,具有很强的临床潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信