A New Quasi-Solid Polymer Electrolyte for Next-Generation Na-O2 Batteries: Unveiling the Potential of a Polyamide-Polyether System.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Mohamed Yahia, Marina Enterría, Cristina Pozo-Gonzalo, Nagore Ortiz-Vitoriano
{"title":"A New Quasi-Solid Polymer Electrolyte for Next-Generation Na-O<sub>2</sub> Batteries: Unveiling the Potential of a Polyamide-Polyether System.","authors":"Mohamed Yahia, Marina Enterría, Cristina Pozo-Gonzalo, Nagore Ortiz-Vitoriano","doi":"10.1002/advs.202504490","DOIUrl":null,"url":null,"abstract":"<p><p>A novel quasi-solid polymer electrolyte (QSPE) composed of polyamide (PA) and polyethylene oxide (PEO), commercially known as Pebax1657, and combined with 1 M sodium bis(trifluoromethanesulfonyl)imide (NaTFSI) in diethylene glycol dimethyl ether (diglyme, DEGDME), has been investigated for sodium-oxygen (Na-O<sub>2</sub>) batteries. Pebax1657 QSPE exhibits high ionic conductivity (6.57 × 10<sup>-4</sup> S cm<sup>-1</sup> at room temprerature - RT), an oxidation onset potential of 4.69 V versus Na/Na⁺, and an enhanced Na⁺ transference number (t<sub>Na</sub> <sup>⁺</sup> ≈ 0.40). Structural analysis (Raman spectroscopy, differential scanning calorimetry, X-ray diffraction, small-angle X-ray scattering) confirms reduced PEO crystallinity and formation of orderly nanodomains, facilitating Na⁺ transport. Long-term galvanostatic cycling in Na|Na symmetrical cells demonstrates stable overpotentials (≈80 mV) at 75 µA cm⁻<sup>2</sup> for 210 h, outperforming conventional liquid electrolytes (≈110 h). Pebax1657 QSPE enables higher discharge capacities (2.60 mAh cm⁻<sup>2</sup> at 75 µA cm⁻<sup>2</sup>; 2.11 mAh cm⁻<sup>2</sup> at 150 µA cm⁻<sup>2</sup>) with lower overpotentials (≈0.2 V). It sustains 25 cycles at 75 µA cm⁻<sup>2</sup> and 35 cycles at 150 µA cm⁻<sup>2</sup> at 0.25 mAh cm⁻<sup>2</sup>, with a Coulombic Efficiency (CE) of 80-90%. Compared to the state of the art, Pebax1657 QSPE offers improved electrochemical stability, lower overpotentials, and better capacity retention. Its sustainability and versatility make it a strong candidate for Na-O<sub>2</sub> batteries and other energy storage applications.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e04490"},"PeriodicalIF":14.3000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202504490","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A novel quasi-solid polymer electrolyte (QSPE) composed of polyamide (PA) and polyethylene oxide (PEO), commercially known as Pebax1657, and combined with 1 M sodium bis(trifluoromethanesulfonyl)imide (NaTFSI) in diethylene glycol dimethyl ether (diglyme, DEGDME), has been investigated for sodium-oxygen (Na-O2) batteries. Pebax1657 QSPE exhibits high ionic conductivity (6.57 × 10-4 S cm-1 at room temprerature - RT), an oxidation onset potential of 4.69 V versus Na/Na⁺, and an enhanced Na⁺ transference number (tNa ≈ 0.40). Structural analysis (Raman spectroscopy, differential scanning calorimetry, X-ray diffraction, small-angle X-ray scattering) confirms reduced PEO crystallinity and formation of orderly nanodomains, facilitating Na⁺ transport. Long-term galvanostatic cycling in Na|Na symmetrical cells demonstrates stable overpotentials (≈80 mV) at 75 µA cm⁻2 for 210 h, outperforming conventional liquid electrolytes (≈110 h). Pebax1657 QSPE enables higher discharge capacities (2.60 mAh cm⁻2 at 75 µA cm⁻2; 2.11 mAh cm⁻2 at 150 µA cm⁻2) with lower overpotentials (≈0.2 V). It sustains 25 cycles at 75 µA cm⁻2 and 35 cycles at 150 µA cm⁻2 at 0.25 mAh cm⁻2, with a Coulombic Efficiency (CE) of 80-90%. Compared to the state of the art, Pebax1657 QSPE offers improved electrochemical stability, lower overpotentials, and better capacity retention. Its sustainability and versatility make it a strong candidate for Na-O2 batteries and other energy storage applications.

用于下一代Na-O2电池的新型准固态聚合物电解质:揭示聚酰胺-聚醚体系的潜力。
研究了一种新型准固态聚合物电解质(QSPE),该电解质由聚酰胺(PA)和聚氧化物(Pebax1657)组成,并与1 M二甘醇二甲醚(二甘醇,DEGDME)中的二(三氟甲烷磺酰)亚胺钠(NaTFSI)结合用于钠氧(Na-O2)电池。Pebax1657 QSPE具有较高的离子电导率(室温- RT为6.57 × 10-4 S cm-1),与Na/Na⁺相比,氧化电位为4.69 V,并且Na⁺的转移数增强(tNa⁺≈0.40)。结构分析(拉曼光谱、差示扫描量热法、x射线衍射、小角度x射线散射)证实PEO结晶度降低,形成有序的纳米畴,有利于Na⁺的传输。在Na|Na对称细胞中长期恒电流循环,在75µA cm - 2下持续210小时,表现出稳定的过电位(≈80 mV),优于传统的液体电解质(≈110小时)。Pebax1657 QSPE具有更高的放电容量(在75µA cm⁻2时2.60 mAh cm⁻2;2.11毫安(cm - 2, 150µA cm - 2),过电位低(≈0.2 V)。它可以在75µA cm毒血症下进行25次循环,在150µA cm毒血症下进行35次循环,在0.25 mAh cm毒血症下进行35次循环,库仑效率(CE)为80-90%。与目前的技术相比,Pebax1657 QSPE提供了更好的电化学稳定性、更低的过电位和更好的容量保持。它的可持续性和多功能性使其成为Na-O2电池和其他储能应用的有力候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信