Metal oxide-based screen-printed diodes

IF 2.6 4区 化学 Q3 ELECTROCHEMISTRY
Jon Velasco, Eduardo Fernández, Roberto Fernández de Luis, Maibelín Rosales, Leire Ruiz-Rubio, F. Javier del Campo
{"title":"Metal oxide-based screen-printed diodes","authors":"Jon Velasco,&nbsp;Eduardo Fernández,&nbsp;Roberto Fernández de Luis,&nbsp;Maibelín Rosales,&nbsp;Leire Ruiz-Rubio,&nbsp;F. Javier del Campo","doi":"10.1007/s10008-025-06269-2","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents the fabrication and characterization of fully screen-printed p–n junction diodes based on metal oxide semiconductor inks. The diodes were produced entirely through scalable and low-cost screen-printing techniques on flexible polyethylene terephthalate (PET) substrates, employing nickel hydroxide (Ni(OH)₂) as the p-type semiconductor and tungsten trioxide (WO₃) as the n-type semiconductor. Unlike many previous reports, which often rely on hybrid approaches incorporating non-printed components or additional post-processing steps, this work demonstrates a fully printed structure, where all layers, including electrodes and semiconductors, are screen-printed. The influence of geometry, ink composition, and processing conditions on diode performance was investigated. Diodes with smaller active areas exhibited better rectification behavior, as increased surface area led to lower resistance and higher current requirements. The optimal ink formulation for the p-type Ni(OH)₂ was found to be a 1:15 weight ratio of Ni precursor to antimony-doped tin oxide particles (ATO), while excess tungsten oxide in the n-type WO₃ inks reduced performance due to surface coverage on conductive particles. Despite challenges such as printing defects, pinholes, and thick semiconductor layers (~ 20–60 μm), the diodes achieved rectification ratios comparable to other printed diodes previously reported in the literature.</p></div>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"29 2024","pages":"2395 - 2405"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10008-025-06269-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Electrochemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10008-025-06269-2","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents the fabrication and characterization of fully screen-printed p–n junction diodes based on metal oxide semiconductor inks. The diodes were produced entirely through scalable and low-cost screen-printing techniques on flexible polyethylene terephthalate (PET) substrates, employing nickel hydroxide (Ni(OH)₂) as the p-type semiconductor and tungsten trioxide (WO₃) as the n-type semiconductor. Unlike many previous reports, which often rely on hybrid approaches incorporating non-printed components or additional post-processing steps, this work demonstrates a fully printed structure, where all layers, including electrodes and semiconductors, are screen-printed. The influence of geometry, ink composition, and processing conditions on diode performance was investigated. Diodes with smaller active areas exhibited better rectification behavior, as increased surface area led to lower resistance and higher current requirements. The optimal ink formulation for the p-type Ni(OH)₂ was found to be a 1:15 weight ratio of Ni precursor to antimony-doped tin oxide particles (ATO), while excess tungsten oxide in the n-type WO₃ inks reduced performance due to surface coverage on conductive particles. Despite challenges such as printing defects, pinholes, and thick semiconductor layers (~ 20–60 μm), the diodes achieved rectification ratios comparable to other printed diodes previously reported in the literature.

基于金属氧化物的丝网印刷二极管
本研究提出了基于金属氧化物半导体油墨的全丝网印刷p-n结二极管的制造和表征。二极管完全是通过可扩展和低成本的丝网印刷技术在柔性聚对苯二甲酸乙二醇酯(PET)衬底上生产的,采用氢氧化镍(Ni(OH)₂)作为p型半导体,三氧化钨(WO₃)作为n型半导体。与之前的许多报告不同,这些报告通常依赖于结合非印刷组件或额外后处理步骤的混合方法,这项工作展示了一个完全印刷的结构,其中所有层,包括电极和半导体,都是丝网印刷的。研究了几何形状、油墨成分和加工条件对二极管性能的影响。具有较小有源面积的二极管表现出更好的整流行为,因为增加的表面积导致更低的电阻和更高的电流要求。发现p型Ni(OH)₂的最佳油墨配方是Ni前驱体与掺锑氧化锡颗粒(ATO)的重量比为1:15,而n型WO₃油墨中过量的氧化钨由于表面覆盖在导电颗粒上而降低了性能。尽管存在印刷缺陷、针孔和厚半导体层(~ 20-60 μm)等挑战,但二极管实现了与文献中先前报道的其他印刷二极管相当的整流比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.80
自引率
4.00%
发文量
227
审稿时长
4.1 months
期刊介绍: The Journal of Solid State Electrochemistry is devoted to all aspects of solid-state chemistry and solid-state physics in electrochemistry. The Journal of Solid State Electrochemistry publishes papers on all aspects of electrochemistry of solid compounds, including experimental and theoretical, basic and applied work. It equally publishes papers on the thermodynamics and kinetics of electrochemical reactions if at least one actively participating phase is solid. Also of interest are articles on the transport of ions and electrons in solids whenever these processes are relevant to electrochemical reactions and on the use of solid-state electrochemical reactions in the analysis of solids and their surfaces. The journal covers solid-state electrochemistry and focusses on the following fields: mechanisms of solid-state electrochemical reactions, semiconductor electrochemistry, electrochemical batteries, accumulators and fuel cells, electrochemical mineral leaching, galvanic metal plating, electrochemical potential memory devices, solid-state electrochemical sensors, ion and electron transport in solid materials and polymers, electrocatalysis, photoelectrochemistry, corrosion of solid materials, solid-state electroanalysis, electrochemical machining of materials, electrochromism and electrochromic devices, new electrochemical solid-state synthesis. The Journal of Solid State Electrochemistry makes the professional in research and industry aware of this swift progress and its importance for future developments and success in the above-mentioned fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信