Julian De Vuyst, Stefan Eccles, Philipp A. Höhn, Josh Kirklin
{"title":"Linearization (in)stabilities and crossed products","authors":"Julian De Vuyst, Stefan Eccles, Philipp A. Höhn, Josh Kirklin","doi":"10.1007/JHEP05(2025)211","DOIUrl":null,"url":null,"abstract":"<p>Modular crossed product algebras have recently assumed an important role in perturbative quantum gravity as they lead to an <i>intrinsic</i> regularization of entanglement entropies by introducing quantum reference frames (QRFs) in place of explicit regulators. This is achieved by imposing certain boost constraints on gravitons, QRFs and other fields. Here, we revisit the question of how these constraints should be understood through the lens of perturbation theory and particularly the study of linearization (in)stabilities, exploring when linearized solutions can be integrated to exact ones. Our aim is to provide some clarity about the status of justification, under various conditions, for imposing such constraints on the linearized theory in the <i>G</i><sub><i>N</i></sub> → 0 limit as they turn out to be of second-order. While for spatially closed spacetimes there is an essentially unambiguous justification, in the presence of boundaries or the absence of isometries this depends on whether one is also interested in second-order observables. Linearization (in)stabilities occur in any gauge-covariant field theory with non-linear equations and to address this in a unified framework, we translate the subject from the usual canonical formulation into a systematic covariant phase space language. This overcomes theory-specific arguments, exhibiting the universal structure behind (in)stabilities, and permits us to cover arbitrary generally covariant theories. We comment on the relation to modular flow and illustrate our findings in several gravity and gauge theory examples.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 5","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP05(2025)211.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP05(2025)211","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
Modular crossed product algebras have recently assumed an important role in perturbative quantum gravity as they lead to an intrinsic regularization of entanglement entropies by introducing quantum reference frames (QRFs) in place of explicit regulators. This is achieved by imposing certain boost constraints on gravitons, QRFs and other fields. Here, we revisit the question of how these constraints should be understood through the lens of perturbation theory and particularly the study of linearization (in)stabilities, exploring when linearized solutions can be integrated to exact ones. Our aim is to provide some clarity about the status of justification, under various conditions, for imposing such constraints on the linearized theory in the GN → 0 limit as they turn out to be of second-order. While for spatially closed spacetimes there is an essentially unambiguous justification, in the presence of boundaries or the absence of isometries this depends on whether one is also interested in second-order observables. Linearization (in)stabilities occur in any gauge-covariant field theory with non-linear equations and to address this in a unified framework, we translate the subject from the usual canonical formulation into a systematic covariant phase space language. This overcomes theory-specific arguments, exhibiting the universal structure behind (in)stabilities, and permits us to cover arbitrary generally covariant theories. We comment on the relation to modular flow and illustrate our findings in several gravity and gauge theory examples.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).