{"title":"Surface electrode processes in the light of implicit anodic and cathodic current components","authors":"Valentin Mirceski, Mihaela Puiu, Rubin Gulaboski, Sławomira Skrzypek, Camelia Bala","doi":"10.1007/s10008-025-06248-7","DOIUrl":null,"url":null,"abstract":"<div><p>A recently introduced methodology (Sci Rep 14:17314) for estimating the implicit anodic and cathodic current components of a net, experimentally measured current at a given potential is applied to surface-confined, diffusionless electrode processes. Under the simplest conditions of a voltammetric experiment with a linear potential sweep, the conventional voltammogram is deconstructed into genuine anodic and cathodic current components. These components exhibit high sensitivity to electrode kinetics, offering an alternative perspective on electrochemical reversibility compared to conventional cyclic voltammetry. To calculate the implicit current components, prior knowledge of the formal potential of the redox couple is required, along with integration of the net current. Once determined, these current components allow independent estimation of the electrode kinetic parameters, i.e., standard rate constant and the electron transfer coefficient, either through Tafel-like analysis or by employing a novel form of differential current. In the kinetic regime of very fast, seemingly electrochemically reversible electrode reactions—where the net current becomes independent of electrode kinetics—the implicit current components remain highly sensitive to these kinetics. The theoretical considerations are supported by experiments on the reduction of methylene blue, covalently immobilized on a gold electrode via the self-assembly of a mixed peptide-thiol layer.</p></div>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"29 2024","pages":"2203 - 2212"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Electrochemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10008-025-06248-7","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
A recently introduced methodology (Sci Rep 14:17314) for estimating the implicit anodic and cathodic current components of a net, experimentally measured current at a given potential is applied to surface-confined, diffusionless electrode processes. Under the simplest conditions of a voltammetric experiment with a linear potential sweep, the conventional voltammogram is deconstructed into genuine anodic and cathodic current components. These components exhibit high sensitivity to electrode kinetics, offering an alternative perspective on electrochemical reversibility compared to conventional cyclic voltammetry. To calculate the implicit current components, prior knowledge of the formal potential of the redox couple is required, along with integration of the net current. Once determined, these current components allow independent estimation of the electrode kinetic parameters, i.e., standard rate constant and the electron transfer coefficient, either through Tafel-like analysis or by employing a novel form of differential current. In the kinetic regime of very fast, seemingly electrochemically reversible electrode reactions—where the net current becomes independent of electrode kinetics—the implicit current components remain highly sensitive to these kinetics. The theoretical considerations are supported by experiments on the reduction of methylene blue, covalently immobilized on a gold electrode via the self-assembly of a mixed peptide-thiol layer.
期刊介绍:
The Journal of Solid State Electrochemistry is devoted to all aspects of solid-state chemistry and solid-state physics in electrochemistry.
The Journal of Solid State Electrochemistry publishes papers on all aspects of electrochemistry of solid compounds, including experimental and theoretical, basic and applied work. It equally publishes papers on the thermodynamics and kinetics of electrochemical reactions if at least one actively participating phase is solid. Also of interest are articles on the transport of ions and electrons in solids whenever these processes are relevant to electrochemical reactions and on the use of solid-state electrochemical reactions in the analysis of solids and their surfaces.
The journal covers solid-state electrochemistry and focusses on the following fields: mechanisms of solid-state electrochemical reactions, semiconductor electrochemistry, electrochemical batteries, accumulators and fuel cells, electrochemical mineral leaching, galvanic metal plating, electrochemical potential memory devices, solid-state electrochemical sensors, ion and electron transport in solid materials and polymers, electrocatalysis, photoelectrochemistry, corrosion of solid materials, solid-state electroanalysis, electrochemical machining of materials, electrochromism and electrochromic devices, new electrochemical solid-state synthesis.
The Journal of Solid State Electrochemistry makes the professional in research and industry aware of this swift progress and its importance for future developments and success in the above-mentioned fields.