The density of states in electrolyte solutions

IF 2.6 4区 化学 Q3 ELECTROCHEMISTRY
Stephen Fletcher
{"title":"The density of states in electrolyte solutions","authors":"Stephen Fletcher","doi":"10.1007/s10008-025-06287-0","DOIUrl":null,"url":null,"abstract":"<div><p>The goal of this paper is to develop a physical model of energy fluctuations inside electrolyte solutions. The methods used are essentially those of statistical thermodynamics. The key result is an explicit formula for the density of acceptor state energies involved in electron transfer. It is a chi-squared density with one degree-of-freedom. This discovery provides an important correction to the Marcus-Hush-Chidsey theory of electron transfer, which wrongly assumes that the density of energy states in an electrolyte solution is Gaussian.</p></div>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"29 2024","pages":"2195 - 2201"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Electrochemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10008-025-06287-0","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

The goal of this paper is to develop a physical model of energy fluctuations inside electrolyte solutions. The methods used are essentially those of statistical thermodynamics. The key result is an explicit formula for the density of acceptor state energies involved in electron transfer. It is a chi-squared density with one degree-of-freedom. This discovery provides an important correction to the Marcus-Hush-Chidsey theory of electron transfer, which wrongly assumes that the density of energy states in an electrolyte solution is Gaussian.

电解质溶液中状态的密度
本文的目的是建立电解质溶液内部能量波动的物理模型。所用的方法基本上是统计热力学的方法。关键的结果是一个明确的公式的密度受体状态能量参与电子转移。它是一个自由度的卡方密度。这一发现对Marcus-Hush-Chidsey电子转移理论提供了重要的修正,该理论错误地假设电解质溶液中的能态密度是高斯分布的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.80
自引率
4.00%
发文量
227
审稿时长
4.1 months
期刊介绍: The Journal of Solid State Electrochemistry is devoted to all aspects of solid-state chemistry and solid-state physics in electrochemistry. The Journal of Solid State Electrochemistry publishes papers on all aspects of electrochemistry of solid compounds, including experimental and theoretical, basic and applied work. It equally publishes papers on the thermodynamics and kinetics of electrochemical reactions if at least one actively participating phase is solid. Also of interest are articles on the transport of ions and electrons in solids whenever these processes are relevant to electrochemical reactions and on the use of solid-state electrochemical reactions in the analysis of solids and their surfaces. The journal covers solid-state electrochemistry and focusses on the following fields: mechanisms of solid-state electrochemical reactions, semiconductor electrochemistry, electrochemical batteries, accumulators and fuel cells, electrochemical mineral leaching, galvanic metal plating, electrochemical potential memory devices, solid-state electrochemical sensors, ion and electron transport in solid materials and polymers, electrocatalysis, photoelectrochemistry, corrosion of solid materials, solid-state electroanalysis, electrochemical machining of materials, electrochromism and electrochromic devices, new electrochemical solid-state synthesis. The Journal of Solid State Electrochemistry makes the professional in research and industry aware of this swift progress and its importance for future developments and success in the above-mentioned fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信