Songsheng Lin;Huanting Chen;Yin Zheng;Quanji Xie;Xuehua Shen;Huichuan Lin;Shuo Lin;Yan Li
{"title":"Forward Predicting Chromatic-Optical Parameters of the Mixed Light of White-Red Light-Emitting Diode Configurations Based on Deep Learning Algorithms","authors":"Songsheng Lin;Huanting Chen;Yin Zheng;Quanji Xie;Xuehua Shen;Huichuan Lin;Shuo Lin;Yan Li","doi":"10.1109/JPHOT.2025.3569079","DOIUrl":null,"url":null,"abstract":"This paper presents a novel deep learning framework that integrates experimental measurements with advanced modeling techniques to predict key optical parameters, including luminous flux, correlated color temperature (CCT), and chromaticity coordinates of white-red light-emitting diodes (LED) configurations under diverse operating conditions. The heatsink temperature, white LED driving current, and red LED driving current were each varied systematically to generate a comprehensive set of 5,166 spectral power distribution (SPD) measurements. This dataset, partitioned into training (4,182 data sets) and testing (984 data sets) sets, encapsulates the complex physical mechanisms influencing LED performance, such as temperature-induced spectral shifts and current-dependent optical behavior. Four deep learning algorithms were evaluated. Each model was trained to reconstruct the SPD curves and predict the corresponding optical and chromatic parameters. Our results indicate that Long Short-Term Memory Network (LSTM), Convolutional Neural Network (CNN), and Autoencoder (AE) outperform Backpropagation Neural Network (BP-NN), with CNN achieving the highest accuracy in predicting SPD curves and LSTM achieving the highest accuracy in predicting the optical and chromatic parameters. Furthermore, By mimicking the effects of varying red phosphor ratios through independent control of red LED output, our approach can provide deeper insights into the underlying physical phenomena governing LED spectral behavior. This integrated methodology not only enhances our understanding of the interplay between operating conditions and LED performance but also offers a robust predictive tool for the design and optimization of next-generation LED lighting technologies.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"17 3","pages":"1-7"},"PeriodicalIF":2.1000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10999086","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Journal","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10999086/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a novel deep learning framework that integrates experimental measurements with advanced modeling techniques to predict key optical parameters, including luminous flux, correlated color temperature (CCT), and chromaticity coordinates of white-red light-emitting diodes (LED) configurations under diverse operating conditions. The heatsink temperature, white LED driving current, and red LED driving current were each varied systematically to generate a comprehensive set of 5,166 spectral power distribution (SPD) measurements. This dataset, partitioned into training (4,182 data sets) and testing (984 data sets) sets, encapsulates the complex physical mechanisms influencing LED performance, such as temperature-induced spectral shifts and current-dependent optical behavior. Four deep learning algorithms were evaluated. Each model was trained to reconstruct the SPD curves and predict the corresponding optical and chromatic parameters. Our results indicate that Long Short-Term Memory Network (LSTM), Convolutional Neural Network (CNN), and Autoencoder (AE) outperform Backpropagation Neural Network (BP-NN), with CNN achieving the highest accuracy in predicting SPD curves and LSTM achieving the highest accuracy in predicting the optical and chromatic parameters. Furthermore, By mimicking the effects of varying red phosphor ratios through independent control of red LED output, our approach can provide deeper insights into the underlying physical phenomena governing LED spectral behavior. This integrated methodology not only enhances our understanding of the interplay between operating conditions and LED performance but also offers a robust predictive tool for the design and optimization of next-generation LED lighting technologies.
期刊介绍:
Breakthroughs in the generation of light and in its control and utilization have given rise to the field of Photonics, a rapidly expanding area of science and technology with major technological and economic impact. Photonics integrates quantum electronics and optics to accelerate progress in the generation of novel photon sources and in their utilization in emerging applications at the micro and nano scales spanning from the far-infrared/THz to the x-ray region of the electromagnetic spectrum. IEEE Photonics Journal is an online-only journal dedicated to the rapid disclosure of top-quality peer-reviewed research at the forefront of all areas of photonics. Contributions addressing issues ranging from fundamental understanding to emerging technologies and applications are within the scope of the Journal. The Journal includes topics in: Photon sources from far infrared to X-rays, Photonics materials and engineered photonic structures, Integrated optics and optoelectronic, Ultrafast, attosecond, high field and short wavelength photonics, Biophotonics, including DNA photonics, Nanophotonics, Magnetophotonics, Fundamentals of light propagation and interaction; nonlinear effects, Optical data storage, Fiber optics and optical communications devices, systems, and technologies, Micro Opto Electro Mechanical Systems (MOEMS), Microwave photonics, Optical Sensors.