Nikolaos Georgakis, Georgios E. Premetis, Panagiota Pantiora, Christina Varotsou, Charoutioun S. Bodourian, Nikolaos E. Labrou
{"title":"The impact of metagenomic analysis on the discovery of novel endolysins","authors":"Nikolaos Georgakis, Georgios E. Premetis, Panagiota Pantiora, Christina Varotsou, Charoutioun S. Bodourian, Nikolaos E. Labrou","doi":"10.1007/s00253-025-13513-2","DOIUrl":null,"url":null,"abstract":"<p>Metagenomics has revolutionized enzyme discovery by enabling the study of genetic material directly from environmental samples, bypassing the need for microbial cultivation. This approach is particularly effective for identifying novel endolysins, phage-derived enzymes with antibacterial properties suited for therapeutic and industrial applications. Diverse ecosystems, such as biofilms, human microbiome, hot springs, and geothermal areas, serve as rich reservoirs for endolysins with traits like thermostability, broad-spectrum activity, specificity and resistance to harsh conditions. Functional metagenomics, complemented by bioinformatics, enables the discovery and annotation of previously uncharacterized endolysins. Examples of endolysins discovered from metagenomics analysis are discussed. Despite the challenges of analyzing complex microbial ecosystems and isolating target genes, metagenomics holds immense potential for uncovering innovative endolysins, paving the way for developing new biotechnological applications.</p><p><i>• Endolysins offer antibacterial potential for therapeutic and industrial use.</i></p><p><i>• Metagenomics enables discovery of novel endolysins from diverse ecosystems.</i></p><p><i>• Advances in tools and methods have accelerated novel endolysins discovery.</i></p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":"109 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00253-025-13513-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Microbiology and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00253-025-13513-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Metagenomics has revolutionized enzyme discovery by enabling the study of genetic material directly from environmental samples, bypassing the need for microbial cultivation. This approach is particularly effective for identifying novel endolysins, phage-derived enzymes with antibacterial properties suited for therapeutic and industrial applications. Diverse ecosystems, such as biofilms, human microbiome, hot springs, and geothermal areas, serve as rich reservoirs for endolysins with traits like thermostability, broad-spectrum activity, specificity and resistance to harsh conditions. Functional metagenomics, complemented by bioinformatics, enables the discovery and annotation of previously uncharacterized endolysins. Examples of endolysins discovered from metagenomics analysis are discussed. Despite the challenges of analyzing complex microbial ecosystems and isolating target genes, metagenomics holds immense potential for uncovering innovative endolysins, paving the way for developing new biotechnological applications.
• Endolysins offer antibacterial potential for therapeutic and industrial use.
• Metagenomics enables discovery of novel endolysins from diverse ecosystems.
• Advances in tools and methods have accelerated novel endolysins discovery.
期刊介绍:
Applied Microbiology and Biotechnology focusses on prokaryotic or eukaryotic cells, relevant enzymes and proteins; applied genetics and molecular biotechnology; genomics and proteomics; applied microbial and cell physiology; environmental biotechnology; process and products and more. The journal welcomes full-length papers and mini-reviews of new and emerging products, processes and technologies.