Stephen Lirio , Shuo-Hung Kao , Yu-Lun Lai , Cheng-Shiuan Lee , Pamela Berilyn So , Chia-Her Lin
{"title":"Functional group directed tuning of highly recyclable Zr-MOF beads for preferential VOC adsorption","authors":"Stephen Lirio , Shuo-Hung Kao , Yu-Lun Lai , Cheng-Shiuan Lee , Pamela Berilyn So , Chia-Her Lin","doi":"10.1016/j.micromeso.2025.113700","DOIUrl":null,"url":null,"abstract":"<div><div>Volatile organic compounds (VOCs) are pollutants representing a great risk to human health. In this study, the adsorption performance of various zirconium metal organic frameworks (Zr-MOFs) and their composites with polyvinyl alcohol (PVA) was systematically evaluated toward preferential adsorption of polar, non-polar, and acidic VOCs. Zr-MOFs were selected for their ease of preparation, structural stability, tunability, and ability to incorporate diverse functional groups. The composites (Zr-MOFs@PVA) were fabricated <em>via</em> freeze granulation process by embedding Zr-MOFs in PVA at an optimized ratio. Among the Zr-MOF powders, UiO-66-NH<sub>2</sub> exhibited high adsorption for acetone, and isopropanol (IPA) due to its exposed –NH<sub>2</sub> groups, while highly defective UiO-66 demonstrated greater affinity for non-polar toluene, attributed to its high surface area and defect sites. Upon PVA incorporation, the Zr-MOFs@PVA beads exhibited significantly enhanced adsorption capacities for most VOCs tested, outperforming commercial activated carbon and zeolite adsorbents. This enhancement is attributed to the synergistic tuning of surface properties and pore environments induced by PVA. Notably, UiO-66@PVA beads showed the most versatile and consistent performance, demonstrating excellent reusability over 10 adsorption-desorption cycles without loss of crystallinity. Furthermore, under dynamic low-concentration, it achieved a toluene adsorption capacity of 314.45 mg/g. These findings highlight the potential of Zr-MOF@PVA composites as efficient and reusable VOC adsorbent for air purification applications.</div></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"395 ","pages":"Article 113700"},"PeriodicalIF":4.8000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microporous and Mesoporous Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387181125002148","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Volatile organic compounds (VOCs) are pollutants representing a great risk to human health. In this study, the adsorption performance of various zirconium metal organic frameworks (Zr-MOFs) and their composites with polyvinyl alcohol (PVA) was systematically evaluated toward preferential adsorption of polar, non-polar, and acidic VOCs. Zr-MOFs were selected for their ease of preparation, structural stability, tunability, and ability to incorporate diverse functional groups. The composites (Zr-MOFs@PVA) were fabricated via freeze granulation process by embedding Zr-MOFs in PVA at an optimized ratio. Among the Zr-MOF powders, UiO-66-NH2 exhibited high adsorption for acetone, and isopropanol (IPA) due to its exposed –NH2 groups, while highly defective UiO-66 demonstrated greater affinity for non-polar toluene, attributed to its high surface area and defect sites. Upon PVA incorporation, the Zr-MOFs@PVA beads exhibited significantly enhanced adsorption capacities for most VOCs tested, outperforming commercial activated carbon and zeolite adsorbents. This enhancement is attributed to the synergistic tuning of surface properties and pore environments induced by PVA. Notably, UiO-66@PVA beads showed the most versatile and consistent performance, demonstrating excellent reusability over 10 adsorption-desorption cycles without loss of crystallinity. Furthermore, under dynamic low-concentration, it achieved a toluene adsorption capacity of 314.45 mg/g. These findings highlight the potential of Zr-MOF@PVA composites as efficient and reusable VOC adsorbent for air purification applications.
期刊介绍:
Microporous and Mesoporous Materials covers novel and significant aspects of porous solids classified as either microporous (pore size up to 2 nm) or mesoporous (pore size 2 to 50 nm). The porosity should have a specific impact on the material properties or application. Typical examples are zeolites and zeolite-like materials, pillared materials, clathrasils and clathrates, carbon molecular sieves, ordered mesoporous materials, organic/inorganic porous hybrid materials, or porous metal oxides. Both natural and synthetic porous materials are within the scope of the journal.
Topics which are particularly of interest include:
All aspects of natural microporous and mesoporous solids
The synthesis of crystalline or amorphous porous materials
The physico-chemical characterization of microporous and mesoporous solids, especially spectroscopic and microscopic
The modification of microporous and mesoporous solids, for example by ion exchange or solid-state reactions
All topics related to diffusion of mobile species in the pores of microporous and mesoporous materials
Adsorption (and other separation techniques) using microporous or mesoporous adsorbents
Catalysis by microporous and mesoporous materials
Host/guest interactions
Theoretical chemistry and modelling of host/guest interactions
All topics related to the application of microporous and mesoporous materials in industrial catalysis, separation technology, environmental protection, electrochemistry, membranes, sensors, optical devices, etc.