{"title":"Neural-circuit architecture underlying non-image-forming visual functions","authors":"Jiawei Shen , Tian Xue","doi":"10.1016/j.conb.2025.103052","DOIUrl":null,"url":null,"abstract":"<div><div>Perceiving and responding to environmental cues underpins survival and cognition. Light, emerging as one of the most ancient and powerful signals, has shaped life on Earth for billions of years. In mammals, light information is primarily detected by retinal photoreceptors: rods, cones, and intrinsically photosensitive retinal ganglion cells. While rods and cones enable image-forming vision, evolution has preserved and extended evolutionarily ancient yet critical non-image-forming visual functions, including circadian photoentrainment, pupillary light reflexes, and light-mediated modulation of metabolism, mood, and neurodevelopment. Although non-image-forming visual functions have been partially characterized in humans and model organisms, our understanding of the neural circuit mechanisms by which light orchestrates diverse behavior remains fragmented. The discovery of ipRGCs, combined with recent advances in systems neuroscience tools, has yielded critical breakthroughs in three domains: (1) light information encoding within photoreceptors, (2) systematic mapping of retinofugal pathways, and (3) central mechanisms of light-regulated physiological functions. These advances have progressively unraveled causal relationships between non-image-forming visual functions and their underlying eye-brain circuitry. This review summarizes groundbreaking progress in the three domains discussed above, highlighting key unresolved questions in the field.</div></div>","PeriodicalId":10999,"journal":{"name":"Current Opinion in Neurobiology","volume":"93 ","pages":"Article 103052"},"PeriodicalIF":4.8000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959438825000832","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Perceiving and responding to environmental cues underpins survival and cognition. Light, emerging as one of the most ancient and powerful signals, has shaped life on Earth for billions of years. In mammals, light information is primarily detected by retinal photoreceptors: rods, cones, and intrinsically photosensitive retinal ganglion cells. While rods and cones enable image-forming vision, evolution has preserved and extended evolutionarily ancient yet critical non-image-forming visual functions, including circadian photoentrainment, pupillary light reflexes, and light-mediated modulation of metabolism, mood, and neurodevelopment. Although non-image-forming visual functions have been partially characterized in humans and model organisms, our understanding of the neural circuit mechanisms by which light orchestrates diverse behavior remains fragmented. The discovery of ipRGCs, combined with recent advances in systems neuroscience tools, has yielded critical breakthroughs in three domains: (1) light information encoding within photoreceptors, (2) systematic mapping of retinofugal pathways, and (3) central mechanisms of light-regulated physiological functions. These advances have progressively unraveled causal relationships between non-image-forming visual functions and their underlying eye-brain circuitry. This review summarizes groundbreaking progress in the three domains discussed above, highlighting key unresolved questions in the field.
期刊介绍:
Current Opinion in Neurobiology publishes short annotated reviews by leading experts on recent developments in the field of neurobiology. These experts write short reviews describing recent discoveries in this field (in the past 2-5 years), as well as highlighting select individual papers of particular significance.
The journal is thus an important resource allowing researchers and educators to quickly gain an overview and rich understanding of complex and current issues in the field of Neurobiology. The journal takes a unique and valuable approach in focusing each special issue around a topic of scientific and/or societal interest, and then bringing together leading international experts studying that topic, embracing diverse methodologies and perspectives.
Journal Content: The journal consists of 6 issues per year, covering 8 recurring topics every other year in the following categories:
-Neurobiology of Disease-
Neurobiology of Behavior-
Cellular Neuroscience-
Systems Neuroscience-
Developmental Neuroscience-
Neurobiology of Learning and Plasticity-
Molecular Neuroscience-
Computational Neuroscience