{"title":"Periodic Motzkin chain: Ground states and symmetries","authors":"Andrei G. Pronko","doi":"10.1016/j.nuclphysb.2025.116963","DOIUrl":null,"url":null,"abstract":"<div><div>Motzkin chain is a model of nearest-neighbor interacting quantum <span><math><mi>s</mi><mo>=</mo><mn>1</mn></math></span> spins with open boundary conditions. It is known that it has a unique ground state which can be viewed as a sum of Motzkin paths. We consider the case of periodic boundary conditions and provide several conjectures about structure of the ground state space and symmetries of the Hamiltonian. We conjecture that the ground state is degenerate and independent states are distinguished by eigenvalues of the third component of total spin operator. Each of these states can be described as a sum of paths, similar to the Motzkin paths. Moreover, there exist two operators commuting with the Hamiltonian, which play the roles of lowering and raising operators when acting at these states. We conjecture also that these operators generate a <em>C</em>-type Lie algebra, with rank equal to the number of sites. The symmetry algebra of the Hamiltonian is actually wider, and extended, besides the cyclic shift operator, by a central element contained in the third component of total spin operator.</div></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":"1017 ","pages":"Article 116963"},"PeriodicalIF":2.5000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0550321325001725","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0
Abstract
Motzkin chain is a model of nearest-neighbor interacting quantum spins with open boundary conditions. It is known that it has a unique ground state which can be viewed as a sum of Motzkin paths. We consider the case of periodic boundary conditions and provide several conjectures about structure of the ground state space and symmetries of the Hamiltonian. We conjecture that the ground state is degenerate and independent states are distinguished by eigenvalues of the third component of total spin operator. Each of these states can be described as a sum of paths, similar to the Motzkin paths. Moreover, there exist two operators commuting with the Hamiltonian, which play the roles of lowering and raising operators when acting at these states. We conjecture also that these operators generate a C-type Lie algebra, with rank equal to the number of sites. The symmetry algebra of the Hamiltonian is actually wider, and extended, besides the cyclic shift operator, by a central element contained in the third component of total spin operator.
期刊介绍:
Nuclear Physics B focuses on the domain of high energy physics, quantum field theory, statistical systems, and mathematical physics, and includes four main sections: high energy physics - phenomenology, high energy physics - theory, high energy physics - experiment, and quantum field theory, statistical systems, and mathematical physics. The emphasis is on original research papers (Frontiers Articles or Full Length Articles), but Review Articles are also welcome.