Thoi Huu Tra , Thanh T. Nguyen , Thien Q. Huynh , Tatsuya Ishikawa
{"title":"Load transfer behaviour of super long piles in multi-layer soft soil through field testing and numerical 3D FEM modelling","authors":"Thoi Huu Tra , Thanh T. Nguyen , Thien Q. Huynh , Tatsuya Ishikawa","doi":"10.1016/j.sandf.2025.101627","DOIUrl":null,"url":null,"abstract":"<div><div>The load transfer mechanism of pile foundation has received considerable attention over the years, the simultaneous responses that skin friction and base resistances of super-long piles (length <em>L</em> > 60 m) can have in complex soft soil, however, still need greater understanding. This study employs 3D-finite element (FE) analysis incorporating virtual interface elements to simulate the mobilised skin friction and plastic failure (slippage) of pile under ultimate loading. Static pile load tests on 4 different long and large bored piles (1–1.5 m in diameter and 70–80 m in length) embedded in the soft soil region of Mekong Delta are studied in detail through extensive instrumentation along the piles. The results are then used to not only explore load-transfer process, but also validate numerical modelling through a comprehensive process combining multiple-soil layers and −loading stages. The coupled experimental (field) − numerical results reveal the predominant contribution of skin friction exceeding 90 % of the entire bearing capacity before a drop with swift rise in base resistance when reaching a critical condition (displacement <em>s<sub>h</sub></em> > 25 mm and load pressure <em>p</em> > 14,000 kPa). The ratio of active skin friction is defined to assess the simultaneous variation of skin friction at different depths, featuring the role of pile length on the mobilisation of skin friction. The study also proposes a novel dynamic method to calculate the strength reduction factor, <em>R<sub>i</sub></em>, based on fundamental soil and load parameters, giving a vital means to advancing the use of interface elements when modelling pile foundation in soft soil.</div></div>","PeriodicalId":21857,"journal":{"name":"Soils and Foundations","volume":"65 3","pages":"Article 101627"},"PeriodicalIF":3.3000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soils and Foundations","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038080625000617","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The load transfer mechanism of pile foundation has received considerable attention over the years, the simultaneous responses that skin friction and base resistances of super-long piles (length L > 60 m) can have in complex soft soil, however, still need greater understanding. This study employs 3D-finite element (FE) analysis incorporating virtual interface elements to simulate the mobilised skin friction and plastic failure (slippage) of pile under ultimate loading. Static pile load tests on 4 different long and large bored piles (1–1.5 m in diameter and 70–80 m in length) embedded in the soft soil region of Mekong Delta are studied in detail through extensive instrumentation along the piles. The results are then used to not only explore load-transfer process, but also validate numerical modelling through a comprehensive process combining multiple-soil layers and −loading stages. The coupled experimental (field) − numerical results reveal the predominant contribution of skin friction exceeding 90 % of the entire bearing capacity before a drop with swift rise in base resistance when reaching a critical condition (displacement sh > 25 mm and load pressure p > 14,000 kPa). The ratio of active skin friction is defined to assess the simultaneous variation of skin friction at different depths, featuring the role of pile length on the mobilisation of skin friction. The study also proposes a novel dynamic method to calculate the strength reduction factor, Ri, based on fundamental soil and load parameters, giving a vital means to advancing the use of interface elements when modelling pile foundation in soft soil.
期刊介绍:
Soils and Foundations is one of the leading journals in the field of soil mechanics and geotechnical engineering. It is the official journal of the Japanese Geotechnical Society (JGS)., The journal publishes a variety of original research paper, technical reports, technical notes, as well as the state-of-the-art reports upon invitation by the Editor, in the fields of soil and rock mechanics, geotechnical engineering, and environmental geotechnics. Since the publication of Volume 1, No.1 issue in June 1960, Soils and Foundations will celebrate the 60th anniversary in the year of 2020.
Soils and Foundations welcomes theoretical as well as practical work associated with the aforementioned field(s). Case studies that describe the original and interdisciplinary work applicable to geotechnical engineering are particularly encouraged. Discussions to each of the published articles are also welcomed in order to provide an avenue in which opinions of peers may be fed back or exchanged. In providing latest expertise on a specific topic, one issue out of six per year on average was allocated to include selected papers from the International Symposia which were held in Japan as well as overseas.