Correction of resonator-induced distortions in light-induced thermoelastic spectroscopy: Second harmonic sideband perspective

IF 3.5 2区 工程技术 Q2 OPTICS
Zhicheng Wu , Jiahao Du , Jiajia Wang , Dexian Gao , Xiang Li , Heli Ni , Qiaogen Zhang
{"title":"Correction of resonator-induced distortions in light-induced thermoelastic spectroscopy: Second harmonic sideband perspective","authors":"Zhicheng Wu ,&nbsp;Jiahao Du ,&nbsp;Jiajia Wang ,&nbsp;Dexian Gao ,&nbsp;Xiang Li ,&nbsp;Heli Ni ,&nbsp;Qiaogen Zhang","doi":"10.1016/j.optlaseng.2025.109068","DOIUrl":null,"url":null,"abstract":"<div><div>Light-induced thermoelastic spectroscopy (LITES) faces long-term instability caused by resonance parameter drift, phase fluctuations, and background thermal response. This study leverages the second harmonic sideband, containing fingerprint features of resonance parameters, to overcome the limitations of conventional wavelength modulation that focuses only on the central harmonic frequency. By quantifying the distortion mechanism of the resonator on the sideband, we achieve inversion of resonance parameters and use this to perform frequency domain compensation on the photothermal signal, effectively eliminating resonator-induced distortion. Experimental results highlight the method’s ability to resist triple interference. In the surface oxidation experiment, resonance parameter inversion achieves remarkable precision, with a resonance frequency error of 0.0012 % and a quality factor error of 0.59 %. The error in C₂H₂ concentration detection significantly decreased from &gt; 60 % to &lt; 10 % (for concentrations ≥300 μL/L). Under phase fluctuations spanning -90° to 90°, the relative standard deviation (RSD) of the signal value decreases from 25.3 % to 2.5 %. In addition, when humidity varies from 20 % to 70 % causing resonance parameter drift, the method reduces signal fluctuation from 44 % to &lt;5 %. This approach offers a pathway for achieving robust LITES operation in complex environments.</div></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":"193 ","pages":"Article 109068"},"PeriodicalIF":3.5000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Lasers in Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143816625002544","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Light-induced thermoelastic spectroscopy (LITES) faces long-term instability caused by resonance parameter drift, phase fluctuations, and background thermal response. This study leverages the second harmonic sideband, containing fingerprint features of resonance parameters, to overcome the limitations of conventional wavelength modulation that focuses only on the central harmonic frequency. By quantifying the distortion mechanism of the resonator on the sideband, we achieve inversion of resonance parameters and use this to perform frequency domain compensation on the photothermal signal, effectively eliminating resonator-induced distortion. Experimental results highlight the method’s ability to resist triple interference. In the surface oxidation experiment, resonance parameter inversion achieves remarkable precision, with a resonance frequency error of 0.0012 % and a quality factor error of 0.59 %. The error in C₂H₂ concentration detection significantly decreased from > 60 % to < 10 % (for concentrations ≥300 μL/L). Under phase fluctuations spanning -90° to 90°, the relative standard deviation (RSD) of the signal value decreases from 25.3 % to 2.5 %. In addition, when humidity varies from 20 % to 70 % causing resonance parameter drift, the method reduces signal fluctuation from 44 % to <5 %. This approach offers a pathway for achieving robust LITES operation in complex environments.
光致热弹性光谱中谐振器诱导畸变的校正:二次谐波边带视角
光致热弹性光谱(LITES)面临共振参数漂移、相位波动和背景热响应等因素引起的长期不稳定性。本研究利用包含共振参数指纹特征的二次谐波边带,克服了传统波长调制仅关注中心谐波频率的局限性。通过量化边带谐振器的畸变机理,实现了谐振参数的反演,并以此对光热信号进行频域补偿,有效地消除了谐振器引起的畸变。实验结果表明,该方法具有较强的抗三重干扰能力。在表面氧化实验中,共振参数反演精度显著,共振频率误差为0.0012%,质量因子误差为0.59%。C₂H₂浓度检测误差从>;60%到<;10%(浓度≥300 μL/L)。在-90°~ 90°的相位波动范围内,信号值的相对标准偏差(RSD)从25.3%下降到2.5%。此外,当湿度在20% ~ 70%之间变化引起共振参数漂移时,该方法可将信号波动从44%减小到5%。这种方法为在复杂环境中实现强大的LITES操作提供了途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optics and Lasers in Engineering
Optics and Lasers in Engineering 工程技术-光学
CiteScore
8.90
自引率
8.70%
发文量
384
审稿时长
42 days
期刊介绍: Optics and Lasers in Engineering aims at providing an international forum for the interchange of information on the development of optical techniques and laser technology in engineering. Emphasis is placed on contributions targeted at the practical use of methods and devices, the development and enhancement of solutions and new theoretical concepts for experimental methods. Optics and Lasers in Engineering reflects the main areas in which optical methods are being used and developed for an engineering environment. Manuscripts should offer clear evidence of novelty and significance. Papers focusing on parameter optimization or computational issues are not suitable. Similarly, papers focussed on an application rather than the optical method fall outside the journal''s scope. The scope of the journal is defined to include the following: -Optical Metrology- Optical Methods for 3D visualization and virtual engineering- Optical Techniques for Microsystems- Imaging, Microscopy and Adaptive Optics- Computational Imaging- Laser methods in manufacturing- Integrated optical and photonic sensors- Optics and Photonics in Life Science- Hyperspectral and spectroscopic methods- Infrared and Terahertz techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信