Impact of sintering procedures on the densification and conductivity of BaZr0.4Ce0.4Y0.1Yb0.1O3-δ electrolyte for protonic ceramic fuel cells

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Lozane Hamze, Annie Le Gal La Salle, Olivier Joubert, Eric Quarez
{"title":"Impact of sintering procedures on the densification and conductivity of BaZr0.4Ce0.4Y0.1Yb0.1O3-δ electrolyte for protonic ceramic fuel cells","authors":"Lozane Hamze,&nbsp;Annie Le Gal La Salle,&nbsp;Olivier Joubert,&nbsp;Eric Quarez","doi":"10.1016/j.ijhydene.2025.05.241","DOIUrl":null,"url":null,"abstract":"<div><div>BaZr<sub>0.4</sub>Ce<sub>0.4</sub>Y<sub>0.1</sub>Yb<sub>0.1</sub>O<sub>2.9</sub> (BZCYYb4411), a promising proton-conducting electrolyte, requires high sintering temperatures, typically 1600 °C, to be densified to acceptable relative densities, greater than 90 %. This study explores three sintering strategies to reduce the sintering temperature to 1400 °C. The approaches include (1) external ZnO addition, (2) internal Zn doping, and (3) fluorite-phase Zr<sub>0.4</sub>Ce<sub>0.4</sub>Y<sub>0.1</sub>Yb<sub>0.1</sub>O<sub>1.9</sub> (ZCYYb4411) addition as a sintering aid. All methods yielded pure ceramics adopting the <em>I</em>4/<em>mcm</em> tetragonal perovskite phase, with Zn-based strategies achieving relative densities above 90 %. In contrast, the addition of the fluorite phase proved less effective, particularly at higher concentrations. In most cases, the conventional calcination step was avoided, and a relative density above 90 % was achieved through single-step sintering at 1400 °C, thereby improving energy efficiency and simplifying the process. The selected samples were subjected to SEM analysis and conductivity testing, revealing a high conductivity level: BaZr<sub>0.4</sub>Ce<sub>0.4</sub>Y<sub>0.05</sub>Yb<sub>0.1</sub>Zn<sub>0.05</sub>O<sub>3-δ</sub> reached 0.9 × 10<sup>−2</sup> S cm<sup>−1</sup>, while BZCYYb4411 with 0.5 wt% ZnO addition achieved 0.6 × 10<sup>−2</sup> S cm<sup>−1</sup> at 700 °C in humidified N<sub>2</sub> underscoring the effectiveness of these approaches in enhancing the sintering of BZCYYb4411 while maintaining a high level of conductivity.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"139 ","pages":"Pages 316-324"},"PeriodicalIF":8.1000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319925025261","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

BaZr0.4Ce0.4Y0.1Yb0.1O2.9 (BZCYYb4411), a promising proton-conducting electrolyte, requires high sintering temperatures, typically 1600 °C, to be densified to acceptable relative densities, greater than 90 %. This study explores three sintering strategies to reduce the sintering temperature to 1400 °C. The approaches include (1) external ZnO addition, (2) internal Zn doping, and (3) fluorite-phase Zr0.4Ce0.4Y0.1Yb0.1O1.9 (ZCYYb4411) addition as a sintering aid. All methods yielded pure ceramics adopting the I4/mcm tetragonal perovskite phase, with Zn-based strategies achieving relative densities above 90 %. In contrast, the addition of the fluorite phase proved less effective, particularly at higher concentrations. In most cases, the conventional calcination step was avoided, and a relative density above 90 % was achieved through single-step sintering at 1400 °C, thereby improving energy efficiency and simplifying the process. The selected samples were subjected to SEM analysis and conductivity testing, revealing a high conductivity level: BaZr0.4Ce0.4Y0.05Yb0.1Zn0.05O3-δ reached 0.9 × 10−2 S cm−1, while BZCYYb4411 with 0.5 wt% ZnO addition achieved 0.6 × 10−2 S cm−1 at 700 °C in humidified N2 underscoring the effectiveness of these approaches in enhancing the sintering of BZCYYb4411 while maintaining a high level of conductivity.
烧结工艺对质子陶瓷燃料电池用BaZr0.4Ce0.4Y0.1Yb0.1O3-δ电解质致密性和电导率的影响
BaZr0.4Ce0.4Y0.1Yb0.1O2.9 (BZCYYb4411)是一种很有前途的质子导电电解质,需要较高的烧结温度(通常为1600℃)才能致密到可接受的相对密度,大于90%。本研究探索了三种烧结策略,将烧结温度降低到1400℃。方法包括(1)外部添加ZnO,(2)内部掺杂Zn,(3)添加萤石相Zr0.4Ce0.4Y0.1Yb0.1O1.9 (ZCYYb4411)作为助烧剂。所有方法都采用I4/mcm四方钙钛矿相制备纯陶瓷,其中锌基策略的相对密度超过90%。相反,添加萤石相的效果较差,特别是在浓度较高的情况下。在大多数情况下,避免了传统的煅烧步骤,通过1400℃的单步烧结实现了90%以上的相对密度,从而提高了能源效率,简化了工艺。对所选样品进行SEM分析和电导率测试,发现其电导率较高:BaZr0.4Ce0.4Y0.05Yb0.1Zn0.05O3-δ的电导率达到0.9 × 10−2 S cm−1,而添加0.5 wt% ZnO的BZCYYb4411在700°C的湿化N2中达到0.6 × 10−2 S cm−1,强调了这些方法在增强BZCYYb4411烧结的同时保持高电导率的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Hydrogen Energy
International Journal of Hydrogen Energy 工程技术-环境科学
CiteScore
13.50
自引率
25.00%
发文量
3502
审稿时长
60 days
期刊介绍: The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc. The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信