Diffusion-based road defect detection model integrating edge information and efficient multi-scale convolution

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xueqiu Wang , Huanbing Gao , Zemeng Jia
{"title":"Diffusion-based road defect detection model integrating edge information and efficient multi-scale convolution","authors":"Xueqiu Wang ,&nbsp;Huanbing Gao ,&nbsp;Zemeng Jia","doi":"10.1016/j.asoc.2025.113332","DOIUrl":null,"url":null,"abstract":"<div><div>Roads are vital infrastructure components, and the prompt detection and repair of defects are critical for their longevity and safety. This paper introduces the Edge Efficient Multi-Scale Focusing Diffusion Network (EEFNet), a precise method for road defect detection. The Edge Information Enhancement Module (EIEM) accentuates crack contours while minimizing background noise. An Efficient Multi-Scale Convolution (EMSConv) is proposed. The EMSConv captures features across multiple scales, thereby enhancing model efficiency through reduced computational demands and parameter count. The Focusing Diffusion Pyramid Network (FDPN) collects and distributes context-rich features across various scales using a diffusion mechanism, thereby improving detection capabilities. Additionally, the Task Dynamic Align Detection Head (TADDH) facilitates parameter sharing among detection heads, which enhances classification and localization accuracy. EEFNet has demonstrated a 92.7 % accuracy rate at 126 FPS (Frames Per Second) on a road defect dataset and has proven robustness on several diverse datasets including Unmanned Aerial Vehicle Asphalt Pavement Distress Dataset (UAPD), Visual Object Classes 2007 (VOC2007), Global Road Damage Detection2022 (GRDD2022), and Vision Meets Drone 2019 (Visdrone2019). In addition, by pruning the model and deploying it onto edge computing devices, practical experiments have demonstrated that the EEFNet model has substantial practical application value.</div></div>","PeriodicalId":50737,"journal":{"name":"Applied Soft Computing","volume":"178 ","pages":"Article 113332"},"PeriodicalIF":7.2000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S156849462500643X","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Roads are vital infrastructure components, and the prompt detection and repair of defects are critical for their longevity and safety. This paper introduces the Edge Efficient Multi-Scale Focusing Diffusion Network (EEFNet), a precise method for road defect detection. The Edge Information Enhancement Module (EIEM) accentuates crack contours while minimizing background noise. An Efficient Multi-Scale Convolution (EMSConv) is proposed. The EMSConv captures features across multiple scales, thereby enhancing model efficiency through reduced computational demands and parameter count. The Focusing Diffusion Pyramid Network (FDPN) collects and distributes context-rich features across various scales using a diffusion mechanism, thereby improving detection capabilities. Additionally, the Task Dynamic Align Detection Head (TADDH) facilitates parameter sharing among detection heads, which enhances classification and localization accuracy. EEFNet has demonstrated a 92.7 % accuracy rate at 126 FPS (Frames Per Second) on a road defect dataset and has proven robustness on several diverse datasets including Unmanned Aerial Vehicle Asphalt Pavement Distress Dataset (UAPD), Visual Object Classes 2007 (VOC2007), Global Road Damage Detection2022 (GRDD2022), and Vision Meets Drone 2019 (Visdrone2019). In addition, by pruning the model and deploying it onto edge computing devices, practical experiments have demonstrated that the EEFNet model has substantial practical application value.
基于边缘信息和高效多尺度卷积的道路缺陷扩散检测模型
道路是重要的基础设施组成部分,及时发现和修复缺陷对道路的寿命和安全至关重要。本文介绍了边缘高效多尺度聚焦扩散网络(Edge - Efficient Multi-Scale focused Diffusion Network, EEFNet)——一种用于道路缺陷检测的精确方法。边缘信息增强模块(EIEM)突出裂纹轮廓,同时最大限度地减少背景噪声。提出了一种高效的多尺度卷积(EMSConv)算法。EMSConv捕获多个尺度的特征,从而通过减少计算需求和参数计数来提高模型效率。聚焦扩散金字塔网络(FDPN)利用扩散机制在不同尺度上收集和分布上下文丰富的特征,从而提高检测能力。此外,任务动态对齐检测头(TADDH)便于检测头之间的参数共享,提高了分类和定位精度。EEFNet在道路缺陷数据集上以每秒126帧的速度展示了92.7 %的准确率,并在多个不同的数据集上证明了鲁棒性,包括无人机沥青路面破损数据集(UAPD)、视觉对象类别2007 (VOC2007)、全球道路损伤检测2022 (GRDD2022)和视觉与无人机2019 (Visdrone2019)。此外,通过对模型进行修剪并将其部署到边缘计算设备上,实际实验表明,EEFNet模型具有较大的实际应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Soft Computing
Applied Soft Computing 工程技术-计算机:跨学科应用
CiteScore
15.80
自引率
6.90%
发文量
874
审稿时长
10.9 months
期刊介绍: Applied Soft Computing is an international journal promoting an integrated view of soft computing to solve real life problems.The focus is to publish the highest quality research in application and convergence of the areas of Fuzzy Logic, Neural Networks, Evolutionary Computing, Rough Sets and other similar techniques to address real world complexities. Applied Soft Computing is a rolling publication: articles are published as soon as the editor-in-chief has accepted them. Therefore, the web site will continuously be updated with new articles and the publication time will be short.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信