{"title":"Strontium regulating lipid metabolism of bovine hepatocytes via SIRT1/SREBPs pathway","authors":"Fangyuan Zeng, Wenjuan Hu, Haichuan Xu, Xinxin Wang, Chenxu Zhao, Yazhou Wang, Jianguo Wang","doi":"10.1016/j.jsbmb.2025.106785","DOIUrl":null,"url":null,"abstract":"<div><div>Periparturient dairy cows are susceptible to negative energy balance (NEB), which triggers excessive adipose mobilization, leading to elevated plasma non-esterified fatty acids (NEFA) and hepatic lipid accumulation. While strontium (Sr) has shown metabolic regulatory potential, its role in hepatic lipid homeostasis remains unclear. Using an NEFA-induced lipid accumulation model in bovine hepatocytes, we demonstrated that Sr (5–20 μM) significantly reduced intracellular triglyceride (TG) and total cholesterol (TC) levels. Further mechanistic studies revealed that Sr enhances SIRT1 expression and suppresses the expression and nuclear translocation of SREBP-1C/SREBP2, thereby downregulating downstream lipogenic enzymes including ACC, FASN, SCD1, and HMGCR. Molecular docking indicated that Sr²⁺ binds with high affinity to Asp-481/483 of SIRT1, while SIRT1 inhibition with EX-527 abolished Sr-mediated lipid-lowering effects. Additionally, Sr promoted PPARα nuclear translocation to enhance β-oxidation and upregulated LDLR expression to facilitate lipid efflux. This study elucidated the multi-target molecular mechanism of Sr alleviating lipid metabolism disorders in bovine hepatocytes through the SIRT1/SREBPs pathway, providing a theoretical foundation for the application of Sr in preventing metabolic diseases in dairy cows.</div></div>","PeriodicalId":51106,"journal":{"name":"Journal of Steroid Biochemistry and Molecular Biology","volume":"252 ","pages":"Article 106785"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Steroid Biochemistry and Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096007602500113X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Periparturient dairy cows are susceptible to negative energy balance (NEB), which triggers excessive adipose mobilization, leading to elevated plasma non-esterified fatty acids (NEFA) and hepatic lipid accumulation. While strontium (Sr) has shown metabolic regulatory potential, its role in hepatic lipid homeostasis remains unclear. Using an NEFA-induced lipid accumulation model in bovine hepatocytes, we demonstrated that Sr (5–20 μM) significantly reduced intracellular triglyceride (TG) and total cholesterol (TC) levels. Further mechanistic studies revealed that Sr enhances SIRT1 expression and suppresses the expression and nuclear translocation of SREBP-1C/SREBP2, thereby downregulating downstream lipogenic enzymes including ACC, FASN, SCD1, and HMGCR. Molecular docking indicated that Sr²⁺ binds with high affinity to Asp-481/483 of SIRT1, while SIRT1 inhibition with EX-527 abolished Sr-mediated lipid-lowering effects. Additionally, Sr promoted PPARα nuclear translocation to enhance β-oxidation and upregulated LDLR expression to facilitate lipid efflux. This study elucidated the multi-target molecular mechanism of Sr alleviating lipid metabolism disorders in bovine hepatocytes through the SIRT1/SREBPs pathway, providing a theoretical foundation for the application of Sr in preventing metabolic diseases in dairy cows.
期刊介绍:
The Journal of Steroid Biochemistry and Molecular Biology is devoted to new experimental and theoretical developments in areas related to steroids including vitamin D, lipids and their metabolomics. The Journal publishes a variety of contributions, including original articles, general and focused reviews, and rapid communications (brief articles of particular interest and clear novelty). Selected cutting-edge topics will be addressed in Special Issues managed by Guest Editors. Special Issues will contain both commissioned reviews and original research papers to provide comprehensive coverage of specific topics, and all submissions will undergo rigorous peer-review prior to publication.