Heming Wei , Wenchen Hu , Jingtian Hu , Guoqiang He , Fufei Pang , Sridhar Krishnaswamy , Jan Nedoma , Carlos Marques
{"title":"3D printed near-infrared high-numerical aperture achromatic metalens","authors":"Heming Wei , Wenchen Hu , Jingtian Hu , Guoqiang He , Fufei Pang , Sridhar Krishnaswamy , Jan Nedoma , Carlos Marques","doi":"10.1016/j.isci.2025.112628","DOIUrl":null,"url":null,"abstract":"<div><div>Traditional optical Fresnel microlenses have limitations such as large size, limited optical quality for imaging, and low focusing efficiency in achromatic lenses with high NA. In contrast, metalenses rely on their subwavelength structure to modulate the phase distribution, resulting in smaller volumes and superior focusing performance. In this work, we inverse designed and fabricated an achromatic metalens with high-NA and broad wavelength range through direct laser writing using the two-photon polymerization technique. With a focal length of 19 μm, a thickness of 3.6 μm, and a numerical aperture of 0.8, the metalens exhibits an average focusing efficiency of 53.6% and an average half maximum width of 1.27 μm at the working wavelength. The measured average focusing efficiency is 50.4% within the bandwidth range of 1510 nm–1610 nm. The presented work demonstrates the great potential of 3D printing and inverse design for realizing functional meta-devices for aerospace sector.</div></div>","PeriodicalId":342,"journal":{"name":"iScience","volume":"28 6","pages":"Article 112628"},"PeriodicalIF":4.6000,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"iScience","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589004225008892","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Traditional optical Fresnel microlenses have limitations such as large size, limited optical quality for imaging, and low focusing efficiency in achromatic lenses with high NA. In contrast, metalenses rely on their subwavelength structure to modulate the phase distribution, resulting in smaller volumes and superior focusing performance. In this work, we inverse designed and fabricated an achromatic metalens with high-NA and broad wavelength range through direct laser writing using the two-photon polymerization technique. With a focal length of 19 μm, a thickness of 3.6 μm, and a numerical aperture of 0.8, the metalens exhibits an average focusing efficiency of 53.6% and an average half maximum width of 1.27 μm at the working wavelength. The measured average focusing efficiency is 50.4% within the bandwidth range of 1510 nm–1610 nm. The presented work demonstrates the great potential of 3D printing and inverse design for realizing functional meta-devices for aerospace sector.
期刊介绍:
Science has many big remaining questions. To address them, we will need to work collaboratively and across disciplines. The goal of iScience is to help fuel that type of interdisciplinary thinking. iScience is a new open-access journal from Cell Press that provides a platform for original research in the life, physical, and earth sciences. The primary criterion for publication in iScience is a significant contribution to a relevant field combined with robust results and underlying methodology. The advances appearing in iScience include both fundamental and applied investigations across this interdisciplinary range of topic areas. To support transparency in scientific investigation, we are happy to consider replication studies and papers that describe negative results.
We know you want your work to be published quickly and to be widely visible within your community and beyond. With the strong international reputation of Cell Press behind it, publication in iScience will help your work garner the attention and recognition it merits. Like all Cell Press journals, iScience prioritizes rapid publication. Our editorial team pays special attention to high-quality author service and to efficient, clear-cut decisions based on the information available within the manuscript. iScience taps into the expertise across Cell Press journals and selected partners to inform our editorial decisions and help publish your science in a timely and seamless way.