Au&WO3 heterojunctions against multidrug-resistant bacteria

IF 13.2 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Pai Zhang , Ruitao Cha , Yanxue Si , Huize Luo , Qianqian Lin , Jiamin Qin , Hao Tang , Fengshan Zhou , Xiaohui Wang , Peng Jiang , Xingyu Jiang
{"title":"Au&WO3 heterojunctions against multidrug-resistant bacteria","authors":"Pai Zhang ,&nbsp;Ruitao Cha ,&nbsp;Yanxue Si ,&nbsp;Huize Luo ,&nbsp;Qianqian Lin ,&nbsp;Jiamin Qin ,&nbsp;Hao Tang ,&nbsp;Fengshan Zhou ,&nbsp;Xiaohui Wang ,&nbsp;Peng Jiang ,&nbsp;Xingyu Jiang","doi":"10.1016/j.nantod.2025.102813","DOIUrl":null,"url":null,"abstract":"<div><div>Wound infections caused by multidrug-resistant (MDR) Gram-negative bacteria remain a significant medical challenge. Existing treatments, including antibiotics, antimicrobial peptides, and nanomaterials, are limited by drug resistance and toxicity. It is urgent to develop an effective alternative agent for treatment of infected wound. Here, we synthesized Au&amp;WO<sub>3</sub> heterojunctions <em>via</em> a hydrothermal method and NaBH<sub>4</sub> reduction to address MDR bacterial infections. We characterized the structure of Au&amp;WO<sub>3</sub> heterojunctions by TEM, EDS, and zeta potential. Mechanistically, The enhanced bacterial activity could arise from synergistic effects of membrane disruption by Au nanoparticles and replacement of the molybdenum factor by W<sup>6 +</sup> ions. The Au<sub>1</sub>&amp;WO<sub>3</sub> heterojunction had a minimum inhibitory concentration (MIC) of 12 µg/mL against MDR <em>E. coli</em>, outperforming individual Au nanoparticles and WO<sub>3</sub> nanorods. <em>In vitro</em>, Au<sub>1</sub>&amp;WO<sub>3</sub> induced M2 macrophage polarization, demonstrating strong anti-inflammatory activity. The PG-Au<sub>1</sub>&amp;WO<sub>3</sub> membranes exerted excellent antibacterial and anti-inflammation properties with good biocompatibility, promoting wound healing in MDR <em>E. coli</em>-infected wound models. The Au&amp;WO<sub>3</sub> heterojunctions highlight their potential as a promising wound dressing for MDR infection treatment.</div></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"64 ","pages":"Article 102813"},"PeriodicalIF":13.2000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1748013225001859","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Wound infections caused by multidrug-resistant (MDR) Gram-negative bacteria remain a significant medical challenge. Existing treatments, including antibiotics, antimicrobial peptides, and nanomaterials, are limited by drug resistance and toxicity. It is urgent to develop an effective alternative agent for treatment of infected wound. Here, we synthesized Au&WO3 heterojunctions via a hydrothermal method and NaBH4 reduction to address MDR bacterial infections. We characterized the structure of Au&WO3 heterojunctions by TEM, EDS, and zeta potential. Mechanistically, The enhanced bacterial activity could arise from synergistic effects of membrane disruption by Au nanoparticles and replacement of the molybdenum factor by W6 + ions. The Au1&WO3 heterojunction had a minimum inhibitory concentration (MIC) of 12 µg/mL against MDR E. coli, outperforming individual Au nanoparticles and WO3 nanorods. In vitro, Au1&WO3 induced M2 macrophage polarization, demonstrating strong anti-inflammatory activity. The PG-Au1&WO3 membranes exerted excellent antibacterial and anti-inflammation properties with good biocompatibility, promoting wound healing in MDR E. coli-infected wound models. The Au&WO3 heterojunctions highlight their potential as a promising wound dressing for MDR infection treatment.
抗多重耐药细菌的Au&WO3异质结
由多重耐药(MDR)革兰氏阴性细菌引起的伤口感染仍然是一个重大的医学挑战。现有的治疗方法,包括抗生素、抗菌肽和纳米材料,都受到耐药性和毒性的限制。目前迫切需要一种有效的替代药物来治疗感染创面。在这里,我们通过水热法和NaBH4还原合成了Au&;WO3异质结来解决MDR细菌感染。我们通过TEM, EDS和zeta电位表征了Au&;WO3异质结的结构。机制上,细菌活性的增强可能是由Au纳米颗粒破坏膜和W6 +离子取代钼因子的协同作用引起的。Au1&;WO3异质结对MDR大肠杆菌的最低抑制浓度(MIC)为12 µg/mL,优于单个Au纳米颗粒和WO3纳米棒。在体外,au1 & WO3诱导M2巨噬细胞极化,表现出较强的抗炎活性。PG-Au1&;WO3膜具有良好的抗菌和抗炎性能,具有良好的生物相容性,可促进耐多药大肠杆菌感染伤口模型的伤口愈合。WO3异质结突出了其作为耐多药感染治疗伤口敷料的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Today
Nano Today 工程技术-材料科学:综合
CiteScore
21.50
自引率
3.40%
发文量
305
审稿时长
40 days
期刊介绍: Nano Today is a journal dedicated to publishing influential and innovative work in the field of nanoscience and technology. It covers a wide range of subject areas including biomaterials, materials chemistry, materials science, chemistry, bioengineering, biochemistry, genetics and molecular biology, engineering, and nanotechnology. The journal considers articles that inform readers about the latest research, breakthroughs, and topical issues in these fields. It provides comprehensive coverage through a mixture of peer-reviewed articles, research news, and information on key developments. Nano Today is abstracted and indexed in Science Citation Index, Ei Compendex, Embase, Scopus, and INSPEC.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信