Nima Ashjaee , Sidney Fels , John Street , Thomas Oxland
{"title":"Effects of Using Generic vs. Subject-Specific Muscle Properties on Spinal Load Prediction Across Different Posture Simulations","authors":"Nima Ashjaee , Sidney Fels , John Street , Thomas Oxland","doi":"10.1016/j.jbiomech.2025.112741","DOIUrl":null,"url":null,"abstract":"<div><div>Subject-specific musculoskeletal models hold promise for adult spinal deformity management. However, fully subject-specific models require subject-specific soft-tissue properties not typically available in clinical settings. Models created using generic properties are more accessible but potentially less accurate. The objective of this study was to identify which biomechanical properties of muscle function, and in which specific body positions, exhibit significant differences when implementing generic versus subject-specific properties.</div><div>Using OpenSim, we analyzed 250 subject-specific models, focusing on four muscle parameters: geometry-path, maximum-isometric-force, optimal-fiber-length, and tendon-slack-length across 11 postures, encompassing standing and flexed postures. A linear mixed-effects model evaluated the impact of muscle parameters on spinal compression loads. Differences in compression load between the models with subject-specific and generic data were compared statistically using non-parametric methods.</div><div>Subject-specific geometry-path and maximum-isometric-force significantly influenced spinal compression loads, with mean differences of 13 % and 8 %, respectively. Differences were posture-dependent (geometry-path <em>p</em> < 0.001; max-isometric-force <em>p</em> = 0.005). Optimal-fiber-length (<em>p</em> = 0.053) and tendon-slack-length (<em>p</em> = 0.680) showed minimal impact (∼1% difference). Flexed postures were more sensitive to generic muscle parameters, with mean differences of 17 % (geometry-path) and 6 % (max-isometric-force), compared to standing (6 % and 4 %, respectively).</div><div>The pronounced deviations observed in flexion simulations emphasized the necessity of subject-specific data in such simulations. However, when subject-specific data is not available, simulations based on standing postures are the least affected by the use of generic properties.</div></div>","PeriodicalId":15168,"journal":{"name":"Journal of biomechanics","volume":"188 ","pages":"Article 112741"},"PeriodicalIF":2.4000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021929025002532","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Subject-specific musculoskeletal models hold promise for adult spinal deformity management. However, fully subject-specific models require subject-specific soft-tissue properties not typically available in clinical settings. Models created using generic properties are more accessible but potentially less accurate. The objective of this study was to identify which biomechanical properties of muscle function, and in which specific body positions, exhibit significant differences when implementing generic versus subject-specific properties.
Using OpenSim, we analyzed 250 subject-specific models, focusing on four muscle parameters: geometry-path, maximum-isometric-force, optimal-fiber-length, and tendon-slack-length across 11 postures, encompassing standing and flexed postures. A linear mixed-effects model evaluated the impact of muscle parameters on spinal compression loads. Differences in compression load between the models with subject-specific and generic data were compared statistically using non-parametric methods.
Subject-specific geometry-path and maximum-isometric-force significantly influenced spinal compression loads, with mean differences of 13 % and 8 %, respectively. Differences were posture-dependent (geometry-path p < 0.001; max-isometric-force p = 0.005). Optimal-fiber-length (p = 0.053) and tendon-slack-length (p = 0.680) showed minimal impact (∼1% difference). Flexed postures were more sensitive to generic muscle parameters, with mean differences of 17 % (geometry-path) and 6 % (max-isometric-force), compared to standing (6 % and 4 %, respectively).
The pronounced deviations observed in flexion simulations emphasized the necessity of subject-specific data in such simulations. However, when subject-specific data is not available, simulations based on standing postures are the least affected by the use of generic properties.
期刊介绍:
The Journal of Biomechanics publishes reports of original and substantial findings using the principles of mechanics to explore biological problems. Analytical, as well as experimental papers may be submitted, and the journal accepts original articles, surveys and perspective articles (usually by Editorial invitation only), book reviews and letters to the Editor. The criteria for acceptance of manuscripts include excellence, novelty, significance, clarity, conciseness and interest to the readership.
Papers published in the journal may cover a wide range of topics in biomechanics, including, but not limited to:
-Fundamental Topics - Biomechanics of the musculoskeletal, cardiovascular, and respiratory systems, mechanics of hard and soft tissues, biofluid mechanics, mechanics of prostheses and implant-tissue interfaces, mechanics of cells.
-Cardiovascular and Respiratory Biomechanics - Mechanics of blood-flow, air-flow, mechanics of the soft tissues, flow-tissue or flow-prosthesis interactions.
-Cell Biomechanics - Biomechanic analyses of cells, membranes and sub-cellular structures; the relationship of the mechanical environment to cell and tissue response.
-Dental Biomechanics - Design and analysis of dental tissues and prostheses, mechanics of chewing.
-Functional Tissue Engineering - The role of biomechanical factors in engineered tissue replacements and regenerative medicine.
-Injury Biomechanics - Mechanics of impact and trauma, dynamics of man-machine interaction.
-Molecular Biomechanics - Mechanical analyses of biomolecules.
-Orthopedic Biomechanics - Mechanics of fracture and fracture fixation, mechanics of implants and implant fixation, mechanics of bones and joints, wear of natural and artificial joints.
-Rehabilitation Biomechanics - Analyses of gait, mechanics of prosthetics and orthotics.
-Sports Biomechanics - Mechanical analyses of sports performance.