The role of boron in controlling the pH of lithium brines

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Gordon D. Z. Williams, Paz Nativ, Avner Vengosh
{"title":"The role of boron in controlling the pH of lithium brines","authors":"Gordon D. Z. Williams,&nbsp;Paz Nativ,&nbsp;Avner Vengosh","doi":"10.1126/sciadv.adw3268","DOIUrl":null,"url":null,"abstract":"<div >The global clean energy transition requires the development of alternative energy technologies that rely on critical raw materials including lithium. Closed-basin brines, which generate ~40% of global lithium production, often have a circumneutral pH; however, during the evaporative concentration required for lithium production, the evaporated brines become acidic. Using primary geochemical and boron isotope data from the Salar de Uyuni (SDU), Bolivia combined with a modeling approach, we show that boron enrichment, which commonly co-occurs with lithium in closed-basin brines, is the primary factor in controlling the pH of brines from the SDU. We demonstrate that boron in global lithium- and boron-rich brines from closed basins exerts a similar influence on brine pH. The unique boron enrichments and its speciation can explain large proportions of alkalinity in these brines (~98% at the SDU), where evaporation alters the dissociation of boric acid, which triggers the formation of acidic evaporated brines.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 21","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adw3268","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adw3268","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The global clean energy transition requires the development of alternative energy technologies that rely on critical raw materials including lithium. Closed-basin brines, which generate ~40% of global lithium production, often have a circumneutral pH; however, during the evaporative concentration required for lithium production, the evaporated brines become acidic. Using primary geochemical and boron isotope data from the Salar de Uyuni (SDU), Bolivia combined with a modeling approach, we show that boron enrichment, which commonly co-occurs with lithium in closed-basin brines, is the primary factor in controlling the pH of brines from the SDU. We demonstrate that boron in global lithium- and boron-rich brines from closed basins exerts a similar influence on brine pH. The unique boron enrichments and its speciation can explain large proportions of alkalinity in these brines (~98% at the SDU), where evaporation alters the dissociation of boric acid, which triggers the formation of acidic evaporated brines.
硼在锂盐pH控制中的作用
全球清洁能源转型需要发展依赖锂等关键原材料的替代能源技术。闭盆盐水的pH值通常为环中性,约占全球锂产量的40%;然而,在生产锂所需的蒸发浓缩过程中,蒸发的盐水变成酸性。利用玻利维亚乌尤尼盐湖(SDU)的原始地球化学和硼同位素数据,结合建模方法,我们发现硼富集是控制SDU盐水pH的主要因素,而硼富集通常与锂共存。我们证明,来自封闭盆地的全球富锂和富硼卤水中的硼对卤水ph具有类似的影响。独特的硼富集及其形态可以解释这些卤水中的大碱度(SDU约为98%),其中蒸发改变了硼酸的解离,从而引发了酸性蒸发卤水的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信