Ning Liu, Jianqiu Pei, Yifan Xie, He Xuan, Nan Jiang, Jue Wang, Yangyang Gao, Yixun Li, Xiangjie Li, Weijing Liu, Chenying Xiang, Zheng Qiao, Haiping Cao, Yu Nie
{"title":"PTMA controls cardiomyocyte proliferation and cardiac repair by enhancing STAT3 acetylation","authors":"Ning Liu, Jianqiu Pei, Yifan Xie, He Xuan, Nan Jiang, Jue Wang, Yangyang Gao, Yixun Li, Xiangjie Li, Weijing Liu, Chenying Xiang, Zheng Qiao, Haiping Cao, Yu Nie","doi":"10.1126/sciadv.adt9446","DOIUrl":null,"url":null,"abstract":"<div >The adult mammalian heart has limited regenerative capacity due to the low proliferative ability of cardiomyocytes, whereas embryonic cardiomyocytes exhibit robust proliferative potential. Using single-cell RNA sequencing of embryonic hearts, we identified prothymosin α (PTMA) as a key factor driving cardiomyocyte proliferation. Overexpression of PTMA in primary mouse and rat cardiomyocytes significantly promoted cardiomyocyte proliferation and similarly enhanced proliferation in human iPSC–derived cardiomyocytes. Conditional knockout of <i>Ptma</i> in cardiomyocytes impaired neonatal heart regeneration. AAV9-mediated overexpression of <i>Ptma</i> extended the neonatal proliferative window and showed therapeutic promise for enhancing adult heart regeneration. Mechanistically, PTMA interacted with MBD3, inhibiting its deacetylation activity within the MBD3/HDAC1 NuRD complex. This inhibition increased STAT3 acetylation, which positively regulated STAT3 phosphorylation and activation of its target genes. These findings establish PTMA as a critical regulator of heart regeneration and suggest its potential as a therapeutic target for ischemic myocardial injury.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 21","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adt9446","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adt9446","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The adult mammalian heart has limited regenerative capacity due to the low proliferative ability of cardiomyocytes, whereas embryonic cardiomyocytes exhibit robust proliferative potential. Using single-cell RNA sequencing of embryonic hearts, we identified prothymosin α (PTMA) as a key factor driving cardiomyocyte proliferation. Overexpression of PTMA in primary mouse and rat cardiomyocytes significantly promoted cardiomyocyte proliferation and similarly enhanced proliferation in human iPSC–derived cardiomyocytes. Conditional knockout of Ptma in cardiomyocytes impaired neonatal heart regeneration. AAV9-mediated overexpression of Ptma extended the neonatal proliferative window and showed therapeutic promise for enhancing adult heart regeneration. Mechanistically, PTMA interacted with MBD3, inhibiting its deacetylation activity within the MBD3/HDAC1 NuRD complex. This inhibition increased STAT3 acetylation, which positively regulated STAT3 phosphorylation and activation of its target genes. These findings establish PTMA as a critical regulator of heart regeneration and suggest its potential as a therapeutic target for ischemic myocardial injury.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.