Phosphorus-doped amorphous TiO2/C interface enables hierarchical SEI formation on micron-sized SiO anodes for ultra-stable lithium-ion batteries†

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Xiuyan Liu, Jinjun Zhou, Guanjia Zhu, Jihao Li and Haijiao Zhang
{"title":"Phosphorus-doped amorphous TiO2/C interface enables hierarchical SEI formation on micron-sized SiO anodes for ultra-stable lithium-ion batteries†","authors":"Xiuyan Liu, Jinjun Zhou, Guanjia Zhu, Jihao Li and Haijiao Zhang","doi":"10.1039/D5TA03139G","DOIUrl":null,"url":null,"abstract":"<p >Silicon monoxide (SiO) has shown huge potential as a powerful anode material for lithium-ion batteries (LIBs), yet its practical implementation is constrained by substantial volume fluctuation and erratic solid-electrolyte interphase (SEI) creation. In this study, we report a phosphorus-doped amorphous TiO<small><sub>2</sub></small>/C hybrid coated SiO (TP-SiO/C) that simultaneously enhances electronic conductivity and constructs a robust inorganic-rich tri-component SEI composed of LiF, Li<small><sub>2</sub></small>CO<small><sub>3</sub></small> and Li<small><sub>3</sub></small>P. First-principles calculations demonstrate that phosphorus doping induces electronic structure modulation in TiO<small><sub>2</sub></small>, lowering both bandgap energy and Li<small><sup>+</sup></small> adsorption barriers, which synergistically accelerates interfacial charge transfer and Li<small><sup>+</sup></small> desolvation kinetics. Comprehensive <em>in situ</em> and <em>ex situ</em> investigations reveal that the phosphorus-doped interface induces a distinct SEI formation pathway: preferentially formed inner Li<small><sub>3</sub></small>P catalyzes the growth of a dense outer SEI rich in Li<small><sub>2</sub></small>CO<small><sub>3</sub></small> and LiF. This hierarchical architecture significantly lowers the energy barriers for Li<small><sup>+</sup></small> desolvation and diffusion across the SEI, enabling stable and fast interfacial transport. The constructed TP-SiO/C electrode maintains 730.9 mA h g<small><sup>−1</sup></small> after 500 cycles at 2 A g<small><sup>−1</sup></small> with 84.98% initial coulombic efficiency. This finding provides new insights into interfacial design for high-energy silicon-based anodes through targeted SEI composition regulation.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 25","pages":" 19429-19439"},"PeriodicalIF":9.5000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d5ta03139g","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Silicon monoxide (SiO) has shown huge potential as a powerful anode material for lithium-ion batteries (LIBs), yet its practical implementation is constrained by substantial volume fluctuation and erratic solid-electrolyte interphase (SEI) creation. In this study, we report a phosphorus-doped amorphous TiO2/C hybrid coated SiO (TP-SiO/C) that simultaneously enhances electronic conductivity and constructs a robust inorganic-rich tri-component SEI composed of LiF, Li2CO3 and Li3P. First-principles calculations demonstrate that phosphorus doping induces electronic structure modulation in TiO2, lowering both bandgap energy and Li+ adsorption barriers, which synergistically accelerates interfacial charge transfer and Li+ desolvation kinetics. Comprehensive in situ and ex situ investigations reveal that the phosphorus-doped interface induces a distinct SEI formation pathway: preferentially formed inner Li3P catalyzes the growth of a dense outer SEI rich in Li2CO3 and LiF. This hierarchical architecture significantly lowers the energy barriers for Li+ desolvation and diffusion across the SEI, enabling stable and fast interfacial transport. The constructed TP-SiO/C electrode maintains 730.9 mA h g−1 after 500 cycles at 2 A g−1 with 84.98% initial coulombic efficiency. This finding provides new insights into interfacial design for high-energy silicon-based anodes through targeted SEI composition regulation.

Abstract Image

磷掺杂的无定形TiO2/C界面可以在微米级SiO阳极上形成分层SEI,用于超稳定锂离子电池
一氧化硅(SiO)作为锂离子电池(lib)的强大负极材料显示出巨大的潜力,但其实际应用受到大量体积波动和不稳定的固体-电解质界面(SEI)产生的限制。在这项研究中,我们报道了一种磷掺杂的无定形TiO2/C杂化涂层SiO (TP-SiO/C),它同时增强了电子导电性,并构建了由LiF, Li2CO3和Li3P组成的坚固的富含无机的三组分SEI。第一性原理计算表明,磷掺杂诱导了TiO2的电子结构调制,降低了带隙能和Li+吸附势垒,协同加速了界面电荷转移和Li+脱溶动力学。综合原位和非原位研究表明,掺磷界面诱导了独特的SEI形成途径:优先形成的内部Li3P催化了致密的富含Li2CO3和LiF的外部SEI的生长。这种分层结构显著降低了Li+在SEI上的脱溶和扩散的能量障碍,实现了稳定和快速的界面传输。构建的TP-SiO/C电极在2 A g-1下循环500次后保持730.9 mA h g-1,初始库仑效率为84.98%。这一发现为通过定向SEI成分调节高能硅基阳极的界面设计提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信