A biochemical sensor with continuous extended stability in vivo

IF 26.8 1区 医学 Q1 ENGINEERING, BIOMEDICAL
Yihang Chen, Kaiyu X. Fu, Renee Cotton, Zihao Ou, Jean Won Kwak, Jun-Chau Chien, Vladimir Kesler, Hnin Yin Yin Nyein, Michael Eisenstein, H. Tom Soh
{"title":"A biochemical sensor with continuous extended stability in vivo","authors":"Yihang Chen, Kaiyu X. Fu, Renee Cotton, Zihao Ou, Jean Won Kwak, Jun-Chau Chien, Vladimir Kesler, Hnin Yin Yin Nyein, Michael Eisenstein, H. Tom Soh","doi":"10.1038/s41551-025-01389-6","DOIUrl":null,"url":null,"abstract":"<p>The development of biosensors that can detect specific analytes continuously, in vivo, in real time has proven difficult due to biofouling, probe degradation and signal drift that often occur in vivo. By drawing inspiration from intestinal mucosa that can protect host cell receptors in the presence of the gut microbiome, we develop a synthetic biosensor that can continuously detect specific target molecules in vivo. The biomimetic multicomponent sensor features the hierarchical nano-bio interface design with three-dimensional bicontinuous nanoporous structure, polymer coating and aptamer switches, balancing small-molecule sensing and surface protection in complex biological environments. Our system is stable for at least 1 month in undiluted serum in vitro or 1 week implanted within the blood vessels of free-moving rats, retaining over 50% baseline signal and reproducible calibration curves. We demonstrate that the implanted system can intravenously track pharmacokinetics in real time even after 4 days of continuous exposure to flowing blood within rat femoral vein. In this way, our work provides a generalizable design foundation for biosensors that can continuously operate in vivo for extended durations.</p>","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"31 1","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41551-025-01389-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The development of biosensors that can detect specific analytes continuously, in vivo, in real time has proven difficult due to biofouling, probe degradation and signal drift that often occur in vivo. By drawing inspiration from intestinal mucosa that can protect host cell receptors in the presence of the gut microbiome, we develop a synthetic biosensor that can continuously detect specific target molecules in vivo. The biomimetic multicomponent sensor features the hierarchical nano-bio interface design with three-dimensional bicontinuous nanoporous structure, polymer coating and aptamer switches, balancing small-molecule sensing and surface protection in complex biological environments. Our system is stable for at least 1 month in undiluted serum in vitro or 1 week implanted within the blood vessels of free-moving rats, retaining over 50% baseline signal and reproducible calibration curves. We demonstrate that the implanted system can intravenously track pharmacokinetics in real time even after 4 days of continuous exposure to flowing blood within rat femoral vein. In this way, our work provides a generalizable design foundation for biosensors that can continuously operate in vivo for extended durations.

Abstract Image

一种在体内具有连续扩展稳定性的生化传感器
由于生物污染、探针降解和信号漂移等问题,开发能够在体内连续实时检测特定分析物的生物传感器已经被证明是困难的。我们从肠道黏膜中提取灵感,在肠道微生物群存在的情况下保护宿主细胞受体,开发了一种合成生物传感器,可以连续检测体内特定的靶分子。仿生多组分传感器具有三维双连续纳米孔结构、聚合物涂层和适配体开关的分层纳米生物界面设计,在复杂生物环境中平衡小分子传感和表面保护。我们的系统在体外未稀释的血清中稳定至少1个月,或在自由运动大鼠血管中植入1周,保留50%以上的基线信号和可重复的校准曲线。我们证明,即使在连续暴露于大鼠股静脉流动血液4天后,植入系统也可以静脉实时跟踪药代动力学。通过这种方式,我们的工作为能够在体内持续工作更长时间的生物传感器提供了可通用的设计基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Biomedical Engineering
Nature Biomedical Engineering Medicine-Medicine (miscellaneous)
CiteScore
45.30
自引率
1.10%
发文量
138
期刊介绍: Nature Biomedical Engineering is an online-only monthly journal that was launched in January 2017. It aims to publish original research, reviews, and commentary focusing on applied biomedicine and health technology. The journal targets a diverse audience, including life scientists who are involved in developing experimental or computational systems and methods to enhance our understanding of human physiology. It also covers biomedical researchers and engineers who are engaged in designing or optimizing therapies, assays, devices, or procedures for diagnosing or treating diseases. Additionally, clinicians, who make use of research outputs to evaluate patient health or administer therapy in various clinical settings and healthcare contexts, are also part of the target audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信