{"title":"Tension-induced directional migration of hepatic stellate cells potentially coordinates liver fibrosis progression","authors":"Lyu Zhou, Ziao Shi, Xuesi Yang, Jia’nan Zeng, Zhifeng You, Yuying Zhang, Zhiyue Zhu, Zhiqiang Liu, Yudi Niu, Hongsheng Yu, Jinliang He, Yi Long, Zhaozhao Wu, Yan Zhang, Cheng Lyu, Liping Deng, Yuan Wang, Congying Wu, Yanan Du","doi":"10.1038/s41551-025-01381-0","DOIUrl":null,"url":null,"abstract":"<p>Liver fibrosis is an over-reacted wound healing that becomes lethal in its late stage, when hepatic stellate cells (HSCs) trigger fibrotic response, proliferation of connective tissue and build-up of directional fibrous tissue bands (septa). Current in vitro models of liver fibrosis cannot reproduce liver lobule structure and the dynamic formation of septa at the same time, and the known biochemical cues underlying the progression of liver fibrosis cannot explain directional formation of fibrotic tissue. Here we report a microfabricated in vitro model that reproduces both the hexagonal liver lobule structure and the dynamic directionality of septa formation. By using collagen and primary mouse HSCs or human HSC lines, we found that tension was necessary to coordinate the cell migration that contributes to the band-like cell distribution and that HSCs sensed directional biophysical cues through liquid–liquid phase separation. This system allows the study of the biophysical interaction of HSCs and collagen during the formation of septa structures, and could be used to deepen our understanding of liver fibrosis progression.</p>","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"97 1","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41551-025-01381-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Liver fibrosis is an over-reacted wound healing that becomes lethal in its late stage, when hepatic stellate cells (HSCs) trigger fibrotic response, proliferation of connective tissue and build-up of directional fibrous tissue bands (septa). Current in vitro models of liver fibrosis cannot reproduce liver lobule structure and the dynamic formation of septa at the same time, and the known biochemical cues underlying the progression of liver fibrosis cannot explain directional formation of fibrotic tissue. Here we report a microfabricated in vitro model that reproduces both the hexagonal liver lobule structure and the dynamic directionality of septa formation. By using collagen and primary mouse HSCs or human HSC lines, we found that tension was necessary to coordinate the cell migration that contributes to the band-like cell distribution and that HSCs sensed directional biophysical cues through liquid–liquid phase separation. This system allows the study of the biophysical interaction of HSCs and collagen during the formation of septa structures, and could be used to deepen our understanding of liver fibrosis progression.
期刊介绍:
Nature Biomedical Engineering is an online-only monthly journal that was launched in January 2017. It aims to publish original research, reviews, and commentary focusing on applied biomedicine and health technology. The journal targets a diverse audience, including life scientists who are involved in developing experimental or computational systems and methods to enhance our understanding of human physiology. It also covers biomedical researchers and engineers who are engaged in designing or optimizing therapies, assays, devices, or procedures for diagnosing or treating diseases. Additionally, clinicians, who make use of research outputs to evaluate patient health or administer therapy in various clinical settings and healthcare contexts, are also part of the target audience.