{"title":"Urinary proteins from stone formers promote calcium oxalate crystallization, growth and aggregation via oxidative modifications","authors":"Sudarat Hadpech, Paleerath Peerapen, Sakdithep Chaiyait, Suchai Sritippayawan, Visith Thongboonkerd","doi":"10.1016/j.jare.2025.05.040","DOIUrl":null,"url":null,"abstract":"<h3>Introduction</h3>Various urinary parameters are used for determining kidney stone risk. However, almost all of the widely used lithogenic indices rely on urinary concentrations of small molecules/ions and pH.<h3>Objective</h3>To address whether urinary macromolecules (especially oxidatively modified proteins) also play a critical role in determining the stone risk.<h3>Methods</h3>Complexed urinary proteins (proteome) were purified from healthy individuals and calcium oxalate (CaOx) stone formers and performed various crystal assays and quantitative proteomics to compare them. Bioinformatic analyses were performed to gain additional insights, and the obtained data were verified by ELISA.<h3>Results</h3>While the normal urinary proteome inhibited CaOx stone-forming mechanisms (i.e., crystallization, growth and aggregation), the stone formers’ urinary proteome promoted all these CaOx crystal parameters. Descriptive proteomics by nanoLC-ESI-LTQ-Orbitrap-MS/MS analysis identified 203 and 381 proteins in the urine of healthy individuals and stone formers, respectively. Analyses of physicochemical properties revealed only molecular mass and isoelectric point that slightly increased in the stone formers’ urine, whereas instability index, grand average of hydrophathicity (GRAVY) and amino acid composition were comparable. Interestingly, proportion of oxidatively modified proteins (particularly those with methionine oxidation, methionine dioxidation and cysteine trioxidation) markedly increased (∼2.5-fold) in the stone formers’ urine. Quantitative proteomics revealed 89 increased and 56 decreased proteins in the stone formers’ urine. The oxidized proteins had a greater proportion (>3-fold) in the increased proteins (77 %) compared with the decreased ones (23 %), whereas the non-oxidized proteins showed comparable proportions (54 % and 46 %, respectively). Functional enrichment analyses revealed a correlation between the increased proteins and oxidative stress biological processes and molecular functions. Finally, ELISA confirmed the significantly increased levels of oxidized proteins in the stone formers’ urine compared with that of healthy individuals.<h3>Conclusion</h3>These data implicate that oxidatively modified proteome serves as a key pathogenic factor or risk for CaOx kidney stone formation.","PeriodicalId":14952,"journal":{"name":"Journal of Advanced Research","volume":"2 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.jare.2025.05.040","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction
Various urinary parameters are used for determining kidney stone risk. However, almost all of the widely used lithogenic indices rely on urinary concentrations of small molecules/ions and pH.
Objective
To address whether urinary macromolecules (especially oxidatively modified proteins) also play a critical role in determining the stone risk.
Methods
Complexed urinary proteins (proteome) were purified from healthy individuals and calcium oxalate (CaOx) stone formers and performed various crystal assays and quantitative proteomics to compare them. Bioinformatic analyses were performed to gain additional insights, and the obtained data were verified by ELISA.
Results
While the normal urinary proteome inhibited CaOx stone-forming mechanisms (i.e., crystallization, growth and aggregation), the stone formers’ urinary proteome promoted all these CaOx crystal parameters. Descriptive proteomics by nanoLC-ESI-LTQ-Orbitrap-MS/MS analysis identified 203 and 381 proteins in the urine of healthy individuals and stone formers, respectively. Analyses of physicochemical properties revealed only molecular mass and isoelectric point that slightly increased in the stone formers’ urine, whereas instability index, grand average of hydrophathicity (GRAVY) and amino acid composition were comparable. Interestingly, proportion of oxidatively modified proteins (particularly those with methionine oxidation, methionine dioxidation and cysteine trioxidation) markedly increased (∼2.5-fold) in the stone formers’ urine. Quantitative proteomics revealed 89 increased and 56 decreased proteins in the stone formers’ urine. The oxidized proteins had a greater proportion (>3-fold) in the increased proteins (77 %) compared with the decreased ones (23 %), whereas the non-oxidized proteins showed comparable proportions (54 % and 46 %, respectively). Functional enrichment analyses revealed a correlation between the increased proteins and oxidative stress biological processes and molecular functions. Finally, ELISA confirmed the significantly increased levels of oxidized proteins in the stone formers’ urine compared with that of healthy individuals.
Conclusion
These data implicate that oxidatively modified proteome serves as a key pathogenic factor or risk for CaOx kidney stone formation.
期刊介绍:
Journal of Advanced Research (J. Adv. Res.) is an applied/natural sciences, peer-reviewed journal that focuses on interdisciplinary research. The journal aims to contribute to applied research and knowledge worldwide through the publication of original and high-quality research articles in the fields of Medicine, Pharmaceutical Sciences, Dentistry, Physical Therapy, Veterinary Medicine, and Basic and Biological Sciences.
The following abstracting and indexing services cover the Journal of Advanced Research: PubMed/Medline, Essential Science Indicators, Web of Science, Scopus, PubMed Central, PubMed, Science Citation Index Expanded, Directory of Open Access Journals (DOAJ), and INSPEC.