Peng Liu, Qing-Xin Ji, Jin-Yu Liu, Jinhao Ge, Mingxiao Li, Joel Guo, Warren Jin, Maodong Gao, Yan Yu, Avi Feshali, Mario Paniccia, John E. Bowers, Kerry J. Vahala
{"title":"Near-visible integrated soliton microcombs with detectable repetition rates","authors":"Peng Liu, Qing-Xin Ji, Jin-Yu Liu, Jinhao Ge, Mingxiao Li, Joel Guo, Warren Jin, Maodong Gao, Yan Yu, Avi Feshali, Mario Paniccia, John E. Bowers, Kerry J. Vahala","doi":"10.1038/s41467-025-60157-x","DOIUrl":null,"url":null,"abstract":"<p>Integrated soliton microcombs benefit a wide range of conventional comb applications through their compactness and scalability. And applications such as optical clocks and biosensing have driven interest in their operation at wavelengths approaching the visible band. However, increasing normal dispersion and optical loss at shorter wavelengths make short pulse operation at low pumping power challenging, especially for detectable-rate microcombs. Here, low-pump-power, detectable-rate soliton microcombs are demonstrated from telecom to visible bands using ultra-low-loss silicon nitride waveguides. Wavelength-multiplexed operation spanning 2/3 octave is also demonstrated in a single device. The results fill a gap needed for realization of integrated self-referenced visible microcombs.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"130 1","pages":"4780"},"PeriodicalIF":14.7000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-60157-x","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Integrated soliton microcombs benefit a wide range of conventional comb applications through their compactness and scalability. And applications such as optical clocks and biosensing have driven interest in their operation at wavelengths approaching the visible band. However, increasing normal dispersion and optical loss at shorter wavelengths make short pulse operation at low pumping power challenging, especially for detectable-rate microcombs. Here, low-pump-power, detectable-rate soliton microcombs are demonstrated from telecom to visible bands using ultra-low-loss silicon nitride waveguides. Wavelength-multiplexed operation spanning 2/3 octave is also demonstrated in a single device. The results fill a gap needed for realization of integrated self-referenced visible microcombs.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.