{"title":"Enhanced Rap1 small GTPase activity in the ventral hippocampus drives stress-induced anxiety","authors":"Han-Qing Pan, Wei-Zhu Liu, Cui-Zhu Yang, Si-Ying Jiang, Mao-Xue Zhang, Ping Hu, Hao-Tian Yang, Yun-Yun Wang, Ya-Qing Li, Jiang-Long Tu, Wen-Bing Chen, Lumin Liu, Bing-Xing Pan, Wen-Hua Zhang","doi":"10.1126/sciadv.adt3163","DOIUrl":null,"url":null,"abstract":"<div >Chronic stress exposure is a primary contributor to the development of anxiety disorders, closely associated with hippocampal dysfunction. However, the underlying molecular mechanism remains poorly understood. Here, using a mouse model of chronic restraint stress (CRS), we observed a notable increase in the activity, rather than its overall expression level, of hippocampal Rap1, a small guanosine triphosphatase belonging to the Ras superfamily. Pharmacological inhibition of Rap1 activity in the ventral hippocampus (vHPC) effectively mitigated CRS-induced anxiety. Cell type–specific manipulation of Rap1 activity revealed that Rap1 dysfunction in vHPC pyramidal neurons (PNs), but not in astrocytes or interneurons, contributed to CRS-induced anxiety-like behaviors. Mechanistically, the heightened Rap1 activity in vHPC PNs augmented their intrinsic excitability through Kv4.2 phosphorylation at the Thr<sup>607</sup> site, which contributes to the onset of anxiety-like behaviors in mice following CRS. Overall, our study reveals a previously undescribed anxiogenic effect of Rap1 and highlights it as a potential target for therapeutic intervention in stress-related mental disorders.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 21","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adt3163","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adt3163","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Chronic stress exposure is a primary contributor to the development of anxiety disorders, closely associated with hippocampal dysfunction. However, the underlying molecular mechanism remains poorly understood. Here, using a mouse model of chronic restraint stress (CRS), we observed a notable increase in the activity, rather than its overall expression level, of hippocampal Rap1, a small guanosine triphosphatase belonging to the Ras superfamily. Pharmacological inhibition of Rap1 activity in the ventral hippocampus (vHPC) effectively mitigated CRS-induced anxiety. Cell type–specific manipulation of Rap1 activity revealed that Rap1 dysfunction in vHPC pyramidal neurons (PNs), but not in astrocytes or interneurons, contributed to CRS-induced anxiety-like behaviors. Mechanistically, the heightened Rap1 activity in vHPC PNs augmented their intrinsic excitability through Kv4.2 phosphorylation at the Thr607 site, which contributes to the onset of anxiety-like behaviors in mice following CRS. Overall, our study reveals a previously undescribed anxiogenic effect of Rap1 and highlights it as a potential target for therapeutic intervention in stress-related mental disorders.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.