Douglas Gordon Hayes, Anton F. Astner, Sai Venkatesh Pingali, Hugh O'Neill, Barbara Evans, Volker S Urban, Kenneth C Littrell
{"title":"Particle Dynamics of Nanoplastics Suspended in Water with Soil Microparticles: Insights from Small Angle Neutron Scattering (SANS) and Ultra-SANS","authors":"Douglas Gordon Hayes, Anton F. Astner, Sai Venkatesh Pingali, Hugh O'Neill, Barbara Evans, Volker S Urban, Kenneth C Littrell","doi":"10.1039/d4en01199f","DOIUrl":null,"url":null,"abstract":"Small-angle neutron scattering (SANS) and Ultra-SANS (USANS) were employed to understand the aggregation behavior and observe the size reduction for nanoplastics (NPs) formed from a biodegradable mulch film, and microparticles of vermiculite (V), an artificial soil, suspended in water in the presence of low convective shear (ex-situ stirring) prior to measurements. Neutron contrast matching was employed to minimize the signal of V (by 100-fold) and thereby isolate the signal due to NPs in the neutron beam, as the contrast match point (CMP) for V (67 vol% deuteration of water) differed from that of NPs by more than 20%. The original NPs’ size distribution was bimodal: < 200 nm and 500-1200 nm, referred to as small and large NPs, i.e., SNPs and LNPs, respectively. In the absence of V, SNPs formed homoaggregates at higher concentrations that decreased with stirring time, while the size of LNPs remained unchanged. The presence of V at 2-fold lower concentration than NPs did not change the size of SNPs but reduced the size of LNPs by nearly 2-fold as stirring time increased. Because the size of SNPs and LNPs did not differ substantially between CMP and 100% D2O solvents, it is evident that SNPs and LNPs are mainly composed of NPs and not V. The results suggest that LNPs are susceptible to size reduction through collisions with soil microparticles via convection, yielding SNPs near soil-water interfaces within vadose zones.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"20 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Nano","FirstCategoryId":"6","ListUrlMain":"https://doi.org/10.1039/d4en01199f","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Small-angle neutron scattering (SANS) and Ultra-SANS (USANS) were employed to understand the aggregation behavior and observe the size reduction for nanoplastics (NPs) formed from a biodegradable mulch film, and microparticles of vermiculite (V), an artificial soil, suspended in water in the presence of low convective shear (ex-situ stirring) prior to measurements. Neutron contrast matching was employed to minimize the signal of V (by 100-fold) and thereby isolate the signal due to NPs in the neutron beam, as the contrast match point (CMP) for V (67 vol% deuteration of water) differed from that of NPs by more than 20%. The original NPs’ size distribution was bimodal: < 200 nm and 500-1200 nm, referred to as small and large NPs, i.e., SNPs and LNPs, respectively. In the absence of V, SNPs formed homoaggregates at higher concentrations that decreased with stirring time, while the size of LNPs remained unchanged. The presence of V at 2-fold lower concentration than NPs did not change the size of SNPs but reduced the size of LNPs by nearly 2-fold as stirring time increased. Because the size of SNPs and LNPs did not differ substantially between CMP and 100% D2O solvents, it is evident that SNPs and LNPs are mainly composed of NPs and not V. The results suggest that LNPs are susceptible to size reduction through collisions with soil microparticles via convection, yielding SNPs near soil-water interfaces within vadose zones.
期刊介绍:
Environmental Science: Nano serves as a comprehensive and high-impact peer-reviewed source of information on the design and demonstration of engineered nanomaterials for environment-based applications. It also covers the interactions between engineered, natural, and incidental nanomaterials with biological and environmental systems. This scope includes, but is not limited to, the following topic areas:
Novel nanomaterial-based applications for water, air, soil, food, and energy sustainability
Nanomaterial interactions with biological systems and nanotoxicology
Environmental fate, reactivity, and transformations of nanoscale materials
Nanoscale processes in the environment
Sustainable nanotechnology including rational nanomaterial design, life cycle assessment, risk/benefit analysis