Sequestering Mercury in Cation Traps of Iron-Phosphate Framework via Isomorphous Substitution Minimizes Microbial Methylation

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Xin Tong, Sheng-Li Hou, Yu-Xin Yuan, Zhan-Hua Zhang, Yaqi Liu, Pedro J. J. Alvarez, Wei Chen, Tong Zhang
{"title":"Sequestering Mercury in Cation Traps of Iron-Phosphate Framework via Isomorphous Substitution Minimizes Microbial Methylation","authors":"Xin Tong, Sheng-Li Hou, Yu-Xin Yuan, Zhan-Hua Zhang, Yaqi Liu, Pedro J. J. Alvarez, Wei Chen, Tong Zhang","doi":"10.1021/acs.est.4c11826","DOIUrl":null,"url":null,"abstract":"A critical consideration for the design of mercury (Hg)-removal materials is preventing microbial methylation of accumulated Hg, a process that forms the highly neurotoxic and bioaccumulative methylmercury (MeHg) during material disposal or post in situ remediation. Inspired by how natural minerals incorporate Hg impurities within crystalline structures through isomorphous substitution, we design an iron-phosphate framework (NH<sub>4</sub>)Fe<sub>2</sub>(PO<sub>4</sub>)<sub>2</sub>(OH)·2H<sub>2</sub>O (denoted as NFP) for highly effective Hg sequestration. With its large quantities of negatively charged oxygen-rich channels, NFP effectively attracts Hg and physically entraps the ions by forming Hg–O coordination bonds. Thus, NFP renders fast kinetics and high capacity for Hg adsorption, ensuring extremely low Hg release and minimal microbial methylation potential. Regulating crystal facets decreases the ion exchange energy between NFP and Hg<sup>2+</sup>, further enhancing the effectiveness of NFP. Notably, mimicking natural mineral formation not only endows NFP with high environmental compatibility and versatility. This bionic design offers a new strategy for tackling environmental pollution while avoiding generating secondary problems of even greater health concerns.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"130 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c11826","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

A critical consideration for the design of mercury (Hg)-removal materials is preventing microbial methylation of accumulated Hg, a process that forms the highly neurotoxic and bioaccumulative methylmercury (MeHg) during material disposal or post in situ remediation. Inspired by how natural minerals incorporate Hg impurities within crystalline structures through isomorphous substitution, we design an iron-phosphate framework (NH4)Fe2(PO4)2(OH)·2H2O (denoted as NFP) for highly effective Hg sequestration. With its large quantities of negatively charged oxygen-rich channels, NFP effectively attracts Hg and physically entraps the ions by forming Hg–O coordination bonds. Thus, NFP renders fast kinetics and high capacity for Hg adsorption, ensuring extremely low Hg release and minimal microbial methylation potential. Regulating crystal facets decreases the ion exchange energy between NFP and Hg2+, further enhancing the effectiveness of NFP. Notably, mimicking natural mineral formation not only endows NFP with high environmental compatibility and versatility. This bionic design offers a new strategy for tackling environmental pollution while avoiding generating secondary problems of even greater health concerns.

Abstract Image

通过同形取代将汞隔离在磷酸铁框架的阳离子陷阱中,可以最大限度地减少微生物甲基化
设计汞(Hg)去除材料的一个关键考虑因素是防止累积汞的微生物甲基化,这一过程在材料处置或原位修复期间形成高度神经毒性和生物蓄积性甲基汞(MeHg)。受天然矿物如何通过同构取代将汞杂质纳入晶体结构的启发,我们设计了一种磷酸铁框架(NH4)Fe2(PO4)2(OH)·2H2O(表示为NFP),用于高效的汞隔离。NFP具有大量带负电荷的富氧通道,可以有效地吸引Hg,并通过形成Hg - o配位键物理捕获离子。因此,NFP具有快速动力学和高容量的汞吸附,确保极低的汞释放和最小的微生物甲基化电位。调节晶面降低了NFP与Hg2+之间的离子交换能,进一步提高了NFP的效能。值得注意的是,模拟天然矿物形成不仅赋予NFP高环境兼容性和多功能性。这种仿生设计为解决环境污染提供了一种新的策略,同时避免产生更大的健康问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信