Clara Bayona, Teodora Ranđelović, Claudia Olaizola‐Rodrigo, Ignacio Ochoa
{"title":"Microfluidic approaches for liquid biopsy in glioblastoma: Insights into diagnostic and follow‐up strategies","authors":"Clara Bayona, Teodora Ranđelović, Claudia Olaizola‐Rodrigo, Ignacio Ochoa","doi":"10.1002/btm2.70032","DOIUrl":null,"url":null,"abstract":"Glioblastoma (GBM) is a highly malignant brain tumor with a poor survival prognosis of 12–15 months despite current therapeutic strategies. Diagnosing GBM is challenging, often requiring invasive techniques such as tissue biopsy and imaging methods that can provide inconclusive results. In this regard, liquid biopsy represents a promising alternative, providing tumor‐derived information from less invasive sources such as blood or cerebrospinal fluid. However, the typically low concentrations of these biomarkers pose challenges for traditional detection techniques, limiting their sensitivity and specificity. Recent advances in microfluidics offer a potential solution by enhancing the isolation and detection of tumor‐derived cells and molecules, thus improving their detectability. This review discusses the latest progress in microfluidic‐based liquid biopsy systems for glioblastoma, laying the basis for future diagnostic practices that are less invasive and more accurate. As these technologies evolve, they hold the potential to transform GBM diagnosis and monitoring, ultimately improving patient outcomes.","PeriodicalId":9263,"journal":{"name":"Bioengineering & Translational Medicine","volume":"76 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering & Translational Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/btm2.70032","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Glioblastoma (GBM) is a highly malignant brain tumor with a poor survival prognosis of 12–15 months despite current therapeutic strategies. Diagnosing GBM is challenging, often requiring invasive techniques such as tissue biopsy and imaging methods that can provide inconclusive results. In this regard, liquid biopsy represents a promising alternative, providing tumor‐derived information from less invasive sources such as blood or cerebrospinal fluid. However, the typically low concentrations of these biomarkers pose challenges for traditional detection techniques, limiting their sensitivity and specificity. Recent advances in microfluidics offer a potential solution by enhancing the isolation and detection of tumor‐derived cells and molecules, thus improving their detectability. This review discusses the latest progress in microfluidic‐based liquid biopsy systems for glioblastoma, laying the basis for future diagnostic practices that are less invasive and more accurate. As these technologies evolve, they hold the potential to transform GBM diagnosis and monitoring, ultimately improving patient outcomes.
期刊介绍:
Bioengineering & Translational Medicine, an official, peer-reviewed online open-access journal of the American Institute of Chemical Engineers (AIChE) and the Society for Biological Engineering (SBE), focuses on how chemical and biological engineering approaches drive innovative technologies and solutions that impact clinical practice and commercial healthcare products.