{"title":"Protein-Nonfouling and Cell-Binding Polysulfobetaine Inducing Fast Transcytosis for Tumor-Active Drug Delivery.","authors":"Minghui Li,Jianxiang Huang,Qiuyang Dong,Guiping Yuan,Ying Piao,Shiqun Shao,Zhuxian Zhou,Jianbin Tang,Jiajia Xiang,Youqing Shen","doi":"10.1002/adma.202500748","DOIUrl":null,"url":null,"abstract":"Long blood circulation and fast cellular uptake are essential yet paradoxical requirements for efficient tumor-targeted drug delivery carriers. For instance, polyzwitterions, generally nonfouling to proteins and cells, have been extensively explored as long-circulating drug delivery carriers but suffer ultraslow cell internalization, making them inefficient in delivering drugs to cells. Protein-resistant yet cell membrane-binding polymers will simultaneously achieve long blood circulation and fast cellular internalization, but their designs are generally complicated, such as introducing cell-membrane binding groups. Here, it is shown that the N-alkyl chain length of zwitterionic poly(sulfobetaine) can be used to tune its affinity toward proteins and cell membranes. A poly(sulfobetaine) with a moderately long N-alkyl chain became cell membrane-philic while retaining protein resistance, leading to long blood circulation and fast cellular uptake, which further triggered efficient tumor cell transcytosis and intratumor penetration. Thus, its paclitaxel (PTX)-loaded micelles demonstrated potent antitumor efficacy in triple-negative breast cancer models. This study showcases a paradigm of designing polyzwitterions harmonizing long blood circulation and fast cellular uptake properties as tumor-active drug delivery carriers.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"57 1","pages":"e2500748"},"PeriodicalIF":27.4000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202500748","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Long blood circulation and fast cellular uptake are essential yet paradoxical requirements for efficient tumor-targeted drug delivery carriers. For instance, polyzwitterions, generally nonfouling to proteins and cells, have been extensively explored as long-circulating drug delivery carriers but suffer ultraslow cell internalization, making them inefficient in delivering drugs to cells. Protein-resistant yet cell membrane-binding polymers will simultaneously achieve long blood circulation and fast cellular internalization, but their designs are generally complicated, such as introducing cell-membrane binding groups. Here, it is shown that the N-alkyl chain length of zwitterionic poly(sulfobetaine) can be used to tune its affinity toward proteins and cell membranes. A poly(sulfobetaine) with a moderately long N-alkyl chain became cell membrane-philic while retaining protein resistance, leading to long blood circulation and fast cellular uptake, which further triggered efficient tumor cell transcytosis and intratumor penetration. Thus, its paclitaxel (PTX)-loaded micelles demonstrated potent antitumor efficacy in triple-negative breast cancer models. This study showcases a paradigm of designing polyzwitterions harmonizing long blood circulation and fast cellular uptake properties as tumor-active drug delivery carriers.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.