Pu Feng,Chen Gui,Gancheng Wang,Lingling Wang,Jinglei Hu,Xiangjun Gong,Guangzhao Zhang
{"title":"Pairwise Encounters Boost Bacterial Motion by Transient Velocity Spikes.","authors":"Pu Feng,Chen Gui,Gancheng Wang,Lingling Wang,Jinglei Hu,Xiangjun Gong,Guangzhao Zhang","doi":"10.1016/j.bpj.2025.05.021","DOIUrl":null,"url":null,"abstract":"For swimming bacteria near surfaces, pairwise encounters inevitably occur and impact their social behavior. However, we know little about how the encounter events influence bacterial dynamics due to the limitations in tracking interplaying bacteria in 3D. Herein, we elucidated the motions of encountering E. coli using a combination of 3D holographic tracking experiments and hydrodynamic simulations. We find encounters with other cells induce transient yet remarkable fluctuations in the swimming speed and angle of E. coli, concurrently diminishing their temporal correlations, in contrast to solitary cells. Notably, bacteria approaching each other in a face-to-face fashion both accelerate, whereas they both decelerate during pursuits. Generally, the motion of a pair of smooth-swimming E. coli is dictated by the relative angle, velocity, and intercellular distance, as validated by hydrodynamic simulations. The presence of the surface mitigates the velocity spikes during the encounter process. Additionally, the encounter process influences the timing of tumbles, i.e., tumble tends to occur before the two bacteria get in close proximity. Despite the impact of one encounter being transient, we reveal that smooth-swimming E. coli gains propulsion advantage from the encounter, thus providing insights into bacterial physiology and guidance for designing active microdevices.","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":"25 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpj.2025.05.021","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
For swimming bacteria near surfaces, pairwise encounters inevitably occur and impact their social behavior. However, we know little about how the encounter events influence bacterial dynamics due to the limitations in tracking interplaying bacteria in 3D. Herein, we elucidated the motions of encountering E. coli using a combination of 3D holographic tracking experiments and hydrodynamic simulations. We find encounters with other cells induce transient yet remarkable fluctuations in the swimming speed and angle of E. coli, concurrently diminishing their temporal correlations, in contrast to solitary cells. Notably, bacteria approaching each other in a face-to-face fashion both accelerate, whereas they both decelerate during pursuits. Generally, the motion of a pair of smooth-swimming E. coli is dictated by the relative angle, velocity, and intercellular distance, as validated by hydrodynamic simulations. The presence of the surface mitigates the velocity spikes during the encounter process. Additionally, the encounter process influences the timing of tumbles, i.e., tumble tends to occur before the two bacteria get in close proximity. Despite the impact of one encounter being transient, we reveal that smooth-swimming E. coli gains propulsion advantage from the encounter, thus providing insights into bacterial physiology and guidance for designing active microdevices.
期刊介绍:
BJ publishes original articles, letters, and perspectives on important problems in modern biophysics. The papers should be written so as to be of interest to a broad community of biophysicists. BJ welcomes experimental studies that employ quantitative physical approaches for the study of biological systems, including or spanning scales from molecule to whole organism. Experimental studies of a purely descriptive or phenomenological nature, with no theoretical or mechanistic underpinning, are not appropriate for publication in BJ. Theoretical studies should offer new insights into the understanding ofexperimental results or suggest new experimentally testable hypotheses. Articles reporting significant methodological or technological advances, which have potential to open new areas of biophysical investigation, are also suitable for publication in BJ. Papers describing improvements in accuracy or speed of existing methods or extra detail within methods described previously are not suitable for BJ.