{"title":"Extrinsic heterogeneity: Collectivity in isotropic conformational fluctuations of chromosomes.","authors":"Takuya Nara,Haruko Takahashi,Akinori Awazu,Yutaka Kikuchi","doi":"10.1016/j.bpj.2025.05.020","DOIUrl":null,"url":null,"abstract":"Eukaryotic interphase chromosomes maintain a three-dimensional conformation within the nucleus and undergo fluctuations. However, the analysis of chromosome conformational fluctuations has been mainly limited to chromosome conformation capture data that record the contact frequencies between chromosomal regions. Herein, we investigated chromosome fluctuations as polymers based on experimental data from sequential fluorescence in situ hybridization (seqFISH)+ using a multiomics methodology. To describe the principal modes of chromosome fluctuations, we applied principal component analysis to the three-dimensional conformation information of single chromosomes in 446 mouse embryonic stem cells (mESCs) obtained from seqFISH+ data analysis for spatial genomics and signals of nuclear factors (histone marks, repeat DNAs, and proteins in interchromosomal nuclear compartments). We found that chromosome fluctuations exhibit both isotropic and anisotropic modes. The isotropic conformational fluctuations of all chromosome types tended to synchronize each other, reflecting extrinsic heterogeneity in chromosome conformation that is independent of the cell cycle. In contrast, anisotropic conformational fluctuations, occurring in a spindle-like shape, were associated with the interactions between repeat DNAs and nuclear factors. These results highlight the importance of dissecting cell cycle-independent nuclear organization based on the conformational folding of chromosomes and the interactions between genomic regions and nuclear factors.","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":"2 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpj.2025.05.020","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Eukaryotic interphase chromosomes maintain a three-dimensional conformation within the nucleus and undergo fluctuations. However, the analysis of chromosome conformational fluctuations has been mainly limited to chromosome conformation capture data that record the contact frequencies between chromosomal regions. Herein, we investigated chromosome fluctuations as polymers based on experimental data from sequential fluorescence in situ hybridization (seqFISH)+ using a multiomics methodology. To describe the principal modes of chromosome fluctuations, we applied principal component analysis to the three-dimensional conformation information of single chromosomes in 446 mouse embryonic stem cells (mESCs) obtained from seqFISH+ data analysis for spatial genomics and signals of nuclear factors (histone marks, repeat DNAs, and proteins in interchromosomal nuclear compartments). We found that chromosome fluctuations exhibit both isotropic and anisotropic modes. The isotropic conformational fluctuations of all chromosome types tended to synchronize each other, reflecting extrinsic heterogeneity in chromosome conformation that is independent of the cell cycle. In contrast, anisotropic conformational fluctuations, occurring in a spindle-like shape, were associated with the interactions between repeat DNAs and nuclear factors. These results highlight the importance of dissecting cell cycle-independent nuclear organization based on the conformational folding of chromosomes and the interactions between genomic regions and nuclear factors.
期刊介绍:
BJ publishes original articles, letters, and perspectives on important problems in modern biophysics. The papers should be written so as to be of interest to a broad community of biophysicists. BJ welcomes experimental studies that employ quantitative physical approaches for the study of biological systems, including or spanning scales from molecule to whole organism. Experimental studies of a purely descriptive or phenomenological nature, with no theoretical or mechanistic underpinning, are not appropriate for publication in BJ. Theoretical studies should offer new insights into the understanding ofexperimental results or suggest new experimentally testable hypotheses. Articles reporting significant methodological or technological advances, which have potential to open new areas of biophysical investigation, are also suitable for publication in BJ. Papers describing improvements in accuracy or speed of existing methods or extra detail within methods described previously are not suitable for BJ.