{"title":"Neoantigen enriched biomimetic nanovaccine for personalized cancer immunotherapy.","authors":"Yuwei Li,Maoxin Fang,Haotian Yu,Xianglei Wang,Shiyao Xue,Zeze Jiang,Zixuan Huang,Shaoqin Rong,Xiaoli Wei,Zhigang Lu,Min Luo","doi":"10.1038/s41467-025-59977-8","DOIUrl":null,"url":null,"abstract":"Personalized cancer vaccines elicit robust T cell immunity and anti-tumour potency, but identifying tumour-specific antigens remains challenging, severely constraining the therapeutic window. Biomimetic nanovaccines employing cancer cell membranes display inherent biocompatibility and stimulate T-cell responses against diverse tumour antigens, though tumours develop multiple mechanisms to reduce antigen presentation. Here we demonstrate a rapid and general strategy to fabricate personalized nanovaccines based on Antigen-Enriched tumor Cell Membranes (AECM) for early intervention. Interferon-γ potently stimulates antigen presentation across a broad range of cancer cell types. By coupling the generated AECM with PC7A adjuvant, a stimulator of interferon genes (STING)-activating polymer, the AECM@PC7A nanovaccine induces robust poly-neoepitopic T-cell responses even at low dosage, achieving significant tumour regression and metastasis inhibition in multiple murine cancer models. This anti-tumor response relies on MHC-I restricted antigen presentation and CD8+ T-cell activation, with dendritic cells presenting AECM antigens predominantly via cross-dressing to prime T-cells. AECM@PC7A exhibits remarkable anti-tumor efficacy when compared to vaccines with diverse formulations, and demonstrates therapeutic potential in post-surgical and humanized xenograft tumor models. This proof-of-concept study provides a promising universal avenue for the rapid development of personalized cancer vaccines applicable to early intervention for a broad range of patients.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"154 1","pages":"4783"},"PeriodicalIF":14.7000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-59977-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Personalized cancer vaccines elicit robust T cell immunity and anti-tumour potency, but identifying tumour-specific antigens remains challenging, severely constraining the therapeutic window. Biomimetic nanovaccines employing cancer cell membranes display inherent biocompatibility and stimulate T-cell responses against diverse tumour antigens, though tumours develop multiple mechanisms to reduce antigen presentation. Here we demonstrate a rapid and general strategy to fabricate personalized nanovaccines based on Antigen-Enriched tumor Cell Membranes (AECM) for early intervention. Interferon-γ potently stimulates antigen presentation across a broad range of cancer cell types. By coupling the generated AECM with PC7A adjuvant, a stimulator of interferon genes (STING)-activating polymer, the AECM@PC7A nanovaccine induces robust poly-neoepitopic T-cell responses even at low dosage, achieving significant tumour regression and metastasis inhibition in multiple murine cancer models. This anti-tumor response relies on MHC-I restricted antigen presentation and CD8+ T-cell activation, with dendritic cells presenting AECM antigens predominantly via cross-dressing to prime T-cells. AECM@PC7A exhibits remarkable anti-tumor efficacy when compared to vaccines with diverse formulations, and demonstrates therapeutic potential in post-surgical and humanized xenograft tumor models. This proof-of-concept study provides a promising universal avenue for the rapid development of personalized cancer vaccines applicable to early intervention for a broad range of patients.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.