{"title":"Advances in functional magnetic resonance imaging-based brain function mapping: a deep learning perspective.","authors":"Lin Zhao","doi":"10.1093/psyrad/kkaf007","DOIUrl":null,"url":null,"abstract":"<p><p>Functional magnetic resonance imaging (fMRI) provides a powerful tool for studying brain function by capturing neural activity in a non-invasive manner. Mapping brain function from fMRI data enables researchers to investigate the spatial and temporal dynamics of neural processes, providing insights into how the brain responds to various tasks and stimuli. In this review, we explore the evolution of deep learning-based methods for brain function mapping using fMRI. We begin by discussing various network architectures such as convolutional neural networks, recurrent neural networks, and transformers. We further examine supervised, unsupervised, and self-supervised learning paradigms for fMRI-based brain function mapping, highlighting the strengths and limitations of each approach. Additionally, we discuss emerging trends such as fMRI embedding, brain foundation models, and brain-inspired artificial intelligence, emphasizing their potential to revolutionize brain function mapping. Finally, we delve into the real-world applications and prospective impact of these advancements, particularly in the diagnosis of neural disorders, neuroscientific research, and brain-computer interfaces for decoding brain activity. This review aims to provide a comprehensive overview of current techniques and future directions in the field of deep learning and fMRI-based brain function mapping.</p>","PeriodicalId":93496,"journal":{"name":"Psychoradiology","volume":"5 ","pages":"kkaf007"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12093097/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychoradiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/psyrad/kkaf007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Functional magnetic resonance imaging (fMRI) provides a powerful tool for studying brain function by capturing neural activity in a non-invasive manner. Mapping brain function from fMRI data enables researchers to investigate the spatial and temporal dynamics of neural processes, providing insights into how the brain responds to various tasks and stimuli. In this review, we explore the evolution of deep learning-based methods for brain function mapping using fMRI. We begin by discussing various network architectures such as convolutional neural networks, recurrent neural networks, and transformers. We further examine supervised, unsupervised, and self-supervised learning paradigms for fMRI-based brain function mapping, highlighting the strengths and limitations of each approach. Additionally, we discuss emerging trends such as fMRI embedding, brain foundation models, and brain-inspired artificial intelligence, emphasizing their potential to revolutionize brain function mapping. Finally, we delve into the real-world applications and prospective impact of these advancements, particularly in the diagnosis of neural disorders, neuroscientific research, and brain-computer interfaces for decoding brain activity. This review aims to provide a comprehensive overview of current techniques and future directions in the field of deep learning and fMRI-based brain function mapping.