Advances in functional magnetic resonance imaging-based brain function mapping: a deep learning perspective.

IF 2.9
Psychoradiology Pub Date : 2025-04-29 eCollection Date: 2025-01-01 DOI:10.1093/psyrad/kkaf007
Lin Zhao
{"title":"Advances in functional magnetic resonance imaging-based brain function mapping: a deep learning perspective.","authors":"Lin Zhao","doi":"10.1093/psyrad/kkaf007","DOIUrl":null,"url":null,"abstract":"<p><p>Functional magnetic resonance imaging (fMRI) provides a powerful tool for studying brain function by capturing neural activity in a non-invasive manner. Mapping brain function from fMRI data enables researchers to investigate the spatial and temporal dynamics of neural processes, providing insights into how the brain responds to various tasks and stimuli. In this review, we explore the evolution of deep learning-based methods for brain function mapping using fMRI. We begin by discussing various network architectures such as convolutional neural networks, recurrent neural networks, and transformers. We further examine supervised, unsupervised, and self-supervised learning paradigms for fMRI-based brain function mapping, highlighting the strengths and limitations of each approach. Additionally, we discuss emerging trends such as fMRI embedding, brain foundation models, and brain-inspired artificial intelligence, emphasizing their potential to revolutionize brain function mapping. Finally, we delve into the real-world applications and prospective impact of these advancements, particularly in the diagnosis of neural disorders, neuroscientific research, and brain-computer interfaces for decoding brain activity. This review aims to provide a comprehensive overview of current techniques and future directions in the field of deep learning and fMRI-based brain function mapping.</p>","PeriodicalId":93496,"journal":{"name":"Psychoradiology","volume":"5 ","pages":"kkaf007"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12093097/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychoradiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/psyrad/kkaf007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Functional magnetic resonance imaging (fMRI) provides a powerful tool for studying brain function by capturing neural activity in a non-invasive manner. Mapping brain function from fMRI data enables researchers to investigate the spatial and temporal dynamics of neural processes, providing insights into how the brain responds to various tasks and stimuli. In this review, we explore the evolution of deep learning-based methods for brain function mapping using fMRI. We begin by discussing various network architectures such as convolutional neural networks, recurrent neural networks, and transformers. We further examine supervised, unsupervised, and self-supervised learning paradigms for fMRI-based brain function mapping, highlighting the strengths and limitations of each approach. Additionally, we discuss emerging trends such as fMRI embedding, brain foundation models, and brain-inspired artificial intelligence, emphasizing their potential to revolutionize brain function mapping. Finally, we delve into the real-world applications and prospective impact of these advancements, particularly in the diagnosis of neural disorders, neuroscientific research, and brain-computer interfaces for decoding brain activity. This review aims to provide a comprehensive overview of current techniques and future directions in the field of deep learning and fMRI-based brain function mapping.

基于功能磁共振成像的脑功能映射研究进展:深度学习视角。
功能磁共振成像(fMRI)通过非侵入性地捕捉神经活动,为研究大脑功能提供了强有力的工具。通过fMRI数据绘制大脑功能图,研究人员可以研究神经过程的时空动态,从而深入了解大脑对各种任务和刺激的反应。在这篇综述中,我们探讨了基于深度学习的脑功能成像方法的发展。我们首先讨论各种网络架构,如卷积神经网络、循环神经网络和变压器。我们进一步研究了基于fmri的脑功能映射的监督、无监督和自监督学习范式,并强调了每种方法的优势和局限性。此外,我们还讨论了fMRI嵌入、脑基础模型和脑启发人工智能等新兴趋势,强调了它们对脑功能映射的革命性潜力。最后,我们深入研究了这些进步的现实应用和未来影响,特别是在神经疾病的诊断、神经科学研究和解码大脑活动的脑机接口方面。本文综述了深度学习和基于fmri的脑功能图谱的研究现状和发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信