The Combination of TLR4 and TLR9 Agonists with Self-Amplifying RNA Lipid Nanoparticles Leads to a More Powerful Immune Response Against SARS-CoV-2.

IF 1.5 4区 医学 Q4 IMMUNOLOGY
Viral immunology Pub Date : 2025-06-01 Epub Date: 2025-05-22 DOI:10.1089/vim.2024.0099
Reza Keikha, Ebrahim Balali, Ramona Khadivi, Ali Jebali
{"title":"The Combination of TLR4 and TLR9 Agonists with Self-Amplifying RNA Lipid Nanoparticles Leads to a More Powerful Immune Response Against SARS-CoV-2.","authors":"Reza Keikha, Ebrahim Balali, Ramona Khadivi, Ali Jebali","doi":"10.1089/vim.2024.0099","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this study was to compare immune response against SARS-CoV-2 in Balb/C mice when self-amplifying RNA lipid nanoparticles (saRNA LNPs) combined with TLR4 Agonist (monophosphoryl lipid A) as the adjuvant 1 and TLR9 Agonist (CpG) as the adjuvant 2. Here, we found that the size distribution of saRNA LNPs was 88-165 nm with a mean size of 126 nm. Although TLR4 Agonist (adjuvant 1) and TLR9 Agonist (adjuvant 2) could increase the expression of S-protein in HEK293T/17 cells compared with saRNA LNPs alone, the combination of both adjuvants had a significant effect on the expression of the S-protein. Moreover, combining TLR4 Agonist (adjuvant 1) and TLR9 Agonist (adjuvant 2) increased the antibody (IgG and IgA) titer. Here, the ratio of IgG2a/IgG1 showed a T helper type 1-biased response. ELISpot test showed the mice vaccinated with saRNA LNPs+ TLR4 Agonist and TLR9 Agonist had significantly more secreting cells compared with other vaccinated mice (<i>p</i> < 0.05). The secretion of interleukin (IL)-4 and interferons (IFN)-γ by re-stimulated splenocytes confirmed these data. Significant differences in concentration of IL-4 and IFN-γ produced by activated splenocytes were also seen in the mice vaccinated with saRNA LNPs+ TLR4 Agonist and microparticles compared with other groups (<i>p</i> < 0.05). The highest quantity of S-protein was detected in the blood, followed by the small intestine and spleen. The interesting thing was that no significant difference was seen between the amount of S-protein induced by different formulations and the type of adjuvant did not affect the biodistribution.</p>","PeriodicalId":23665,"journal":{"name":"Viral immunology","volume":" ","pages":"190-202"},"PeriodicalIF":1.5000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Viral immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/vim.2024.0099","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/22 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this study was to compare immune response against SARS-CoV-2 in Balb/C mice when self-amplifying RNA lipid nanoparticles (saRNA LNPs) combined with TLR4 Agonist (monophosphoryl lipid A) as the adjuvant 1 and TLR9 Agonist (CpG) as the adjuvant 2. Here, we found that the size distribution of saRNA LNPs was 88-165 nm with a mean size of 126 nm. Although TLR4 Agonist (adjuvant 1) and TLR9 Agonist (adjuvant 2) could increase the expression of S-protein in HEK293T/17 cells compared with saRNA LNPs alone, the combination of both adjuvants had a significant effect on the expression of the S-protein. Moreover, combining TLR4 Agonist (adjuvant 1) and TLR9 Agonist (adjuvant 2) increased the antibody (IgG and IgA) titer. Here, the ratio of IgG2a/IgG1 showed a T helper type 1-biased response. ELISpot test showed the mice vaccinated with saRNA LNPs+ TLR4 Agonist and TLR9 Agonist had significantly more secreting cells compared with other vaccinated mice (p < 0.05). The secretion of interleukin (IL)-4 and interferons (IFN)-γ by re-stimulated splenocytes confirmed these data. Significant differences in concentration of IL-4 and IFN-γ produced by activated splenocytes were also seen in the mice vaccinated with saRNA LNPs+ TLR4 Agonist and microparticles compared with other groups (p < 0.05). The highest quantity of S-protein was detected in the blood, followed by the small intestine and spleen. The interesting thing was that no significant difference was seen between the amount of S-protein induced by different formulations and the type of adjuvant did not affect the biodistribution.

TLR4和TLR9激动剂与自我扩增的RNA脂质纳米颗粒联合使用可导致对SARS-CoV-2更强大的免疫应答。
本研究的目的是比较自扩增RNA脂质纳米颗粒(saRNA LNPs)联合TLR4激动剂(单磷酰脂质A)作为佐剂1和TLR9激动剂(CpG)作为佐剂2时,Balb/C小鼠对SARS-CoV-2的免疫应答。在这里,我们发现saRNA LNPs的大小分布在88-165 nm之间,平均大小为126 nm。虽然与单独使用saRNA LNPs相比,TLR4激动剂(佐剂1)和TLR9激动剂(佐剂2)可以增加HEK293T/17细胞中s蛋白的表达,但两种佐剂联合使用对s蛋白的表达有显著影响。此外,TLR4激动剂(佐剂1)和TLR9激动剂(佐剂2)联合使用可提高抗体(IgG和IgA)滴度。在这里,IgG2a/IgG1的比例显示出T辅助型1偏向反应。ELISpot检测显示,接种saRNA LNPs+ TLR4 Agonist和TLR9 Agonist的小鼠分泌细胞明显多于其他接种小鼠(p < 0.05)。再刺激的脾细胞分泌白细胞介素(IL)-4和干扰素(IFN)-γ证实了这些数据。saRNA LNPs+ TLR4激动剂和微颗粒免疫小鼠活化脾细胞产生的IL-4和IFN-γ浓度与其他组相比也有显著差异(p < 0.05)。血液中s蛋白含量最高,其次是小肠和脾脏。有趣的是,不同配方诱导的s蛋白量没有显著差异,佐剂类型对生物分布没有影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Viral immunology
Viral immunology 医学-病毒学
CiteScore
3.60
自引率
0.00%
发文量
84
审稿时长
6-12 weeks
期刊介绍: Viral Immunology delivers cutting-edge peer-reviewed research on rare, emerging, and under-studied viruses, with special focus on analyzing mutual relationships between external viruses and internal immunity. Original research, reviews, and commentaries on relevant viruses are presented in clinical, translational, and basic science articles for researchers in multiple disciplines. Viral Immunology coverage includes: Human and animal viral immunology Research and development of viral vaccines, including field trials Immunological characterization of viral components Virus-based immunological diseases, including autoimmune syndromes Pathogenic mechanisms Viral diagnostics Tumor and cancer immunology with virus as the primary factor Viral immunology methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信