Robust Multiepitope Vaccine from Glycoproteins Against Human Metapneumovirus Genotypes A2a, A2b, and A2c by Utilizing Immunoinformatics and Reverse Vaccinology Approaches.
Elham Mohammed Khatrawi, Syed Luqman Ali, Syed Yasir Ali, Aigul Abduldayeva, Muna Ali Abdullah Mugibel
{"title":"Robust Multiepitope Vaccine from Glycoproteins Against Human Metapneumovirus Genotypes A2a, A2b, and A2c by Utilizing Immunoinformatics and Reverse Vaccinology Approaches.","authors":"Elham Mohammed Khatrawi, Syed Luqman Ali, Syed Yasir Ali, Aigul Abduldayeva, Muna Ali Abdullah Mugibel","doi":"10.1089/vim.2025.0021","DOIUrl":null,"url":null,"abstract":"<p><p>Human metapneumovirus (HMPV) is a prominent respiratory pathogen causing significant morbidity and mortality worldwide, mostly in young teenagers, the old, and immunocompromised individuals. Despite its clinical impact, no licensed vaccine is currently available, highlighting the urgent need for effective prophylactic strategies. This research aimed to design a multiepitope vaccine (MEV) targeting conserved and immunodominant regions of HMPV, leveraging immunoinformatics tools to ensure broad coverage and efficacy against the virus and its diverse sublineages. Glycoproteins from HMPV genotypes A2a, A2b, and A2c were analyzed to identify 18 highly antigenic and overlapping epitopes capable of eliciting robust B-cell, T-cell, and interferon-gamma (IFN-γ)-mediated immune responses. Toxicity and allergenicity studies confirmed the safety of particular epitopes, which were incorporated into two vaccine constructs using immunogenic linkers and adjuvants. The chimeric vaccines displayed high antigenicity, molecular stability, and nonallergenic properties. Structural refinement and Ramachandran plot analyses established the stability and accuracy of the 3D models. Molecular docking studies verified strong interactions with immune receptors, particularly toll-like receptor (TLR)2, TLR3, TLR4, TLR8, and human leukocyte antigen molecules, indicating robust immune stimulation potential. Molecular dynamics simulations further validated the vaccine's stability and interaction dynamics, with immune simulations predicting promising responses. The designed vaccine constructs were shown to be highly soluble, stable, and suitable for recombinant expression in <i>Escherichia coli</i>, enabling further biochemical and immunoreactivity validation. These findings provide a foundation for next-generation vaccine development against HMPV, offering promising avenues for clinical application and future research. [Figure: see text].</p>","PeriodicalId":23665,"journal":{"name":"Viral immunology","volume":" ","pages":"157-171"},"PeriodicalIF":1.5000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Viral immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/vim.2025.0021","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/22 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Human metapneumovirus (HMPV) is a prominent respiratory pathogen causing significant morbidity and mortality worldwide, mostly in young teenagers, the old, and immunocompromised individuals. Despite its clinical impact, no licensed vaccine is currently available, highlighting the urgent need for effective prophylactic strategies. This research aimed to design a multiepitope vaccine (MEV) targeting conserved and immunodominant regions of HMPV, leveraging immunoinformatics tools to ensure broad coverage and efficacy against the virus and its diverse sublineages. Glycoproteins from HMPV genotypes A2a, A2b, and A2c were analyzed to identify 18 highly antigenic and overlapping epitopes capable of eliciting robust B-cell, T-cell, and interferon-gamma (IFN-γ)-mediated immune responses. Toxicity and allergenicity studies confirmed the safety of particular epitopes, which were incorporated into two vaccine constructs using immunogenic linkers and adjuvants. The chimeric vaccines displayed high antigenicity, molecular stability, and nonallergenic properties. Structural refinement and Ramachandran plot analyses established the stability and accuracy of the 3D models. Molecular docking studies verified strong interactions with immune receptors, particularly toll-like receptor (TLR)2, TLR3, TLR4, TLR8, and human leukocyte antigen molecules, indicating robust immune stimulation potential. Molecular dynamics simulations further validated the vaccine's stability and interaction dynamics, with immune simulations predicting promising responses. The designed vaccine constructs were shown to be highly soluble, stable, and suitable for recombinant expression in Escherichia coli, enabling further biochemical and immunoreactivity validation. These findings provide a foundation for next-generation vaccine development against HMPV, offering promising avenues for clinical application and future research. [Figure: see text].
期刊介绍:
Viral Immunology delivers cutting-edge peer-reviewed research on rare, emerging, and under-studied viruses, with special focus on analyzing mutual relationships between external viruses and internal immunity. Original research, reviews, and commentaries on relevant viruses are presented in clinical, translational, and basic science articles for researchers in multiple disciplines.
Viral Immunology coverage includes:
Human and animal viral immunology
Research and development of viral vaccines, including field trials
Immunological characterization of viral components
Virus-based immunological diseases, including autoimmune syndromes
Pathogenic mechanisms
Viral diagnostics
Tumor and cancer immunology with virus as the primary factor
Viral immunology methods.