Minal Khatri, N R Siva Shanmugam, Xinpeng Zhang, Revanth Sai Kumar Reddy Patel, Yanbin Yin
{"title":"AcrDB update: Predicted 3D structures of anti-CRISPRs in human gut viromes.","authors":"Minal Khatri, N R Siva Shanmugam, Xinpeng Zhang, Revanth Sai Kumar Reddy Patel, Yanbin Yin","doi":"10.1002/pro.70177","DOIUrl":null,"url":null,"abstract":"<p><p>Anti-CRISPR (Acr) proteins play a key role in phage-host interactions and hold great promise for advancing genome-editing technologies. However, finding new Acrs has been challenging due to their low sequence similarity. Recent advances in protein structure prediction have opened new pathways for Acr discovery by using 3D structure similarity. This study presents an updated AcrDB, with the following new features not available in other databases: (1) predicted Acrs from human gut virome databases, (2) Acr structures predicted by AlphaFold2, (3) a structural similarity search function to allow users to submit new sequences and structures to search against 3D structures of experimentally known Acrs. The updated AcrDB contains predicted 3D structures of 795 candidate Acrs with structural similarity (TM-score ≥0.7) to known Acrs supported by at least two of the three non-sequence similarity-based tools (TM-Vec, Foldseek, AcrPred). Among these candidate Acrs, 121 are supported by all three tools. AcrDB also includes 3D structures of 122 experimentally characterized Acr proteins. The 121 most confident candidate Acrs were combined with the 122 known Acrs and clustered into 163 sequence similarity-based Acr families. The 163 families were further subject to a structure similarity-based hierarchical clustering, revealing structural similarity between 44 candidate Acr (cAcr) families and 119 known Acr families. The bacterial hosts of these 163 Acr families are mainly from Bacillota, Pseudomonadota, and Bacteroidota, which are all dominant gut bacterial phyla. Many of these 163 Acr families are also co-localized in Acr operons. All the data and visualization are provided on our website: https://pro.unl.edu/AcrDB.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"34 6","pages":"e70177"},"PeriodicalIF":5.2000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12095918/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.70177","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Anti-CRISPR (Acr) proteins play a key role in phage-host interactions and hold great promise for advancing genome-editing technologies. However, finding new Acrs has been challenging due to their low sequence similarity. Recent advances in protein structure prediction have opened new pathways for Acr discovery by using 3D structure similarity. This study presents an updated AcrDB, with the following new features not available in other databases: (1) predicted Acrs from human gut virome databases, (2) Acr structures predicted by AlphaFold2, (3) a structural similarity search function to allow users to submit new sequences and structures to search against 3D structures of experimentally known Acrs. The updated AcrDB contains predicted 3D structures of 795 candidate Acrs with structural similarity (TM-score ≥0.7) to known Acrs supported by at least two of the three non-sequence similarity-based tools (TM-Vec, Foldseek, AcrPred). Among these candidate Acrs, 121 are supported by all three tools. AcrDB also includes 3D structures of 122 experimentally characterized Acr proteins. The 121 most confident candidate Acrs were combined with the 122 known Acrs and clustered into 163 sequence similarity-based Acr families. The 163 families were further subject to a structure similarity-based hierarchical clustering, revealing structural similarity between 44 candidate Acr (cAcr) families and 119 known Acr families. The bacterial hosts of these 163 Acr families are mainly from Bacillota, Pseudomonadota, and Bacteroidota, which are all dominant gut bacterial phyla. Many of these 163 Acr families are also co-localized in Acr operons. All the data and visualization are provided on our website: https://pro.unl.edu/AcrDB.
期刊介绍:
Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution.
Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics.
The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication.
Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).