{"title":"Genome-wide identification of socs gene in rainbow trout (Oncorhynchus mykiss) and response to microplastic exposure.","authors":"Fang Ma, Wenli Wang, Jiaxuan Dong, Xiangjun Zhou, Zhiyun Lin, Pan Zheng, Xiajiao Nian, Lili Dong","doi":"10.1007/s11033-025-10601-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>To investigate the response of the suppressor of the cytokine signaling (socs) gene family in rainbow trout following exposure to microplastics, this study conducted a bioinformatics analysis of the socs gene family using rainbow trout genome data, complemented by experiments involving microplastic exposure and gene expression detection.</p><p><strong>Methods and results: </strong>The findings revealed that the rainbow trout SOCS gene family comprises 27 members, encoding proteins with lengths ranging from 110 to 837 amino acids. Analyses of motifs, domains, and gene structures indicate that members of this family are highly conserved. RNA sequencing data demonstrated that, following microplastic exposure, the expression levels of socs1, socs2, socs3, socs5, socs6, socs7, and cish in the liver, intestine, and brain tissues of rainbow trout underwent significant changes. Additionally, RT-qPCR results indicated that the expression levels of several socs genes were down-regulated, whereas socs1a, socs1b, socs7a1, socs7b1, and socs7b2 exhibited significant up-regulation. These genes may play crucial roles in the response to microplastic exposure in rainbow trout.</p><p><strong>Conclusion: </strong>This study elucidates the involvement of the socs gene family members in the context of microplastic exposure, providing valuable insights into the underlying toxicological mechanisms and enhancing our understanding of the threats posed by plastic pollution to freshwater organisms.</p>","PeriodicalId":18755,"journal":{"name":"Molecular Biology Reports","volume":"52 1","pages":"486"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11033-025-10601-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: To investigate the response of the suppressor of the cytokine signaling (socs) gene family in rainbow trout following exposure to microplastics, this study conducted a bioinformatics analysis of the socs gene family using rainbow trout genome data, complemented by experiments involving microplastic exposure and gene expression detection.
Methods and results: The findings revealed that the rainbow trout SOCS gene family comprises 27 members, encoding proteins with lengths ranging from 110 to 837 amino acids. Analyses of motifs, domains, and gene structures indicate that members of this family are highly conserved. RNA sequencing data demonstrated that, following microplastic exposure, the expression levels of socs1, socs2, socs3, socs5, socs6, socs7, and cish in the liver, intestine, and brain tissues of rainbow trout underwent significant changes. Additionally, RT-qPCR results indicated that the expression levels of several socs genes were down-regulated, whereas socs1a, socs1b, socs7a1, socs7b1, and socs7b2 exhibited significant up-regulation. These genes may play crucial roles in the response to microplastic exposure in rainbow trout.
Conclusion: This study elucidates the involvement of the socs gene family members in the context of microplastic exposure, providing valuable insights into the underlying toxicological mechanisms and enhancing our understanding of the threats posed by plastic pollution to freshwater organisms.
期刊介绍:
Molecular Biology Reports publishes original research papers and review articles that demonstrate novel molecular and cellular findings in both eukaryotes (animals, plants, algae, funghi) and prokaryotes (bacteria and archaea).The journal publishes results of both fundamental and translational research as well as new techniques that advance experimental progress in the field and presents original research papers, short communications and (mini-) reviews.