Yingying Chen, Hui Li, Yongmei Zhang, Fajie Zhao, Jie Zhou
{"title":"BCG Vaccination Reprograms the Function of M-MDSCs and Aggravates Necrotizing Enterocolitis in Neonates.","authors":"Yingying Chen, Hui Li, Yongmei Zhang, Fajie Zhao, Jie Zhou","doi":"10.1111/imm.13946","DOIUrl":null,"url":null,"abstract":"<p><p>Bacillus Calmette-Guérin (BCG), a live-attenuated vaccine primarily used against tuberculosis (TB), also provides protection against a broad array of antigens or heterologous antigens through the induction of trained immunity (TI). While BCG is generally safe for full-term infants, its application in preterm infants is contentious due to their immature immune systems and heightened susceptibility to adverse effects. Preterm infants, particularly those with low birth weight, are at an elevated risk of severe complications, such as necrotizing enterocolitis (NEC), a life-threatening inflammatory condition of the intestines. NEC is characterised by dysregulated immune responses to microbial colonisation, with myeloid-derived suppressor cells (MDSCs) playing a crucial role in maintaining immune tolerance during early life. This study reveals that BCG vaccination significantly exacerbates NEC severity (p = 0.0048) by enhancing glycolysis and upregulating mTOR-HIF1α signalling in neonatal monocytic MDSCs (M-MDSCs), thereby impairing their immunosuppressive function. Pharmacological or genetic inhibition of mTOR-HIF1α signalling or glycolysis pathways restored M-MDSC function and mitigated NEC severity. These findings complement our previous work on BCG's effects on polymorphonuclear (PMN)-MDSCs and highlight the dual role of BCG: while it provides protective benefits in certain contexts, it may also increase NEC risk in preterm infants by disrupting MDSC-mediated immune tolerance. This study offers critical insights into the mechanisms underlying BCG's off-target effects and underscores the necessity of tailored vaccination strategies for preterm infants to minimise potential risks.</p>","PeriodicalId":13508,"journal":{"name":"Immunology","volume":" ","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/imm.13946","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bacillus Calmette-Guérin (BCG), a live-attenuated vaccine primarily used against tuberculosis (TB), also provides protection against a broad array of antigens or heterologous antigens through the induction of trained immunity (TI). While BCG is generally safe for full-term infants, its application in preterm infants is contentious due to their immature immune systems and heightened susceptibility to adverse effects. Preterm infants, particularly those with low birth weight, are at an elevated risk of severe complications, such as necrotizing enterocolitis (NEC), a life-threatening inflammatory condition of the intestines. NEC is characterised by dysregulated immune responses to microbial colonisation, with myeloid-derived suppressor cells (MDSCs) playing a crucial role in maintaining immune tolerance during early life. This study reveals that BCG vaccination significantly exacerbates NEC severity (p = 0.0048) by enhancing glycolysis and upregulating mTOR-HIF1α signalling in neonatal monocytic MDSCs (M-MDSCs), thereby impairing their immunosuppressive function. Pharmacological or genetic inhibition of mTOR-HIF1α signalling or glycolysis pathways restored M-MDSC function and mitigated NEC severity. These findings complement our previous work on BCG's effects on polymorphonuclear (PMN)-MDSCs and highlight the dual role of BCG: while it provides protective benefits in certain contexts, it may also increase NEC risk in preterm infants by disrupting MDSC-mediated immune tolerance. This study offers critical insights into the mechanisms underlying BCG's off-target effects and underscores the necessity of tailored vaccination strategies for preterm infants to minimise potential risks.
期刊介绍:
Immunology is one of the longest-established immunology journals and is recognised as one of the leading journals in its field. We have global representation in authors, editors and reviewers.
Immunology publishes papers describing original findings in all areas of cellular and molecular immunology. High-quality original articles describing mechanistic insights into fundamental aspects of the immune system are welcome. Topics of interest to the journal include: immune cell development, cancer immunology, systems immunology/omics and informatics, inflammation, immunometabolism, immunology of infection, microbiota and immunity, mucosal immunology, and neuroimmunology.
The journal also publishes commissioned review articles on subjects of topical interest to immunologists, and commissions in-depth review series: themed sets of review articles which take a 360° view of select topics at the heart of immunological research.