Adekunle Rowaiye, Gordon C Ibeanu, Doofan Bur, Sandra Nnadi, Ugonna Morikwe, Akwoba Joseph Ogugua, Chinwe Uzoma Chukwudi
{"title":"Phyto-molecules show potentials to combat drug-resistance in bacterial cell membranes.","authors":"Adekunle Rowaiye, Gordon C Ibeanu, Doofan Bur, Sandra Nnadi, Ugonna Morikwe, Akwoba Joseph Ogugua, Chinwe Uzoma Chukwudi","doi":"10.1016/j.micpath.2025.107723","DOIUrl":null,"url":null,"abstract":"<p><p>The global rise in antibiotic resistance and the emergence of infectious diseases have intensified the need for novel antimicrobial therapies. As a result, there is a growing demand to validate the ethnomedicinal claims that plant extracts possess antibacterial properties. This validation requires the characterization of specific phytoconstituents, including anti-infective compounds and antimicrobial peptides. This study explores the progress made in identifying and producing anti-infectives derived from plants, with a focus on their mechanisms of action, current applications, and future potentials. One key area of investigation is the therapeutic potential of phyto-molecules, that target bacterial cell membranes. These molecules which include phenols, alkaloids, terpenoids, saponins, and peptides, have shown significant ability to disrupt bacterial cell membranes through various molecular mechanisms. By impairing membrane integrity, inhibiting efflux pumps, and altering membrane permeability, phyto-molecules offer a novel strategy for combating drug-resistant bacterial strains. This disruption not only enhances the efficacy of conventional antibiotics but also provides standalone antimicrobial activity. In conclusion, phyto-molecules represent a promising solution to overcoming antibiotic resistance, with their ability to target structural and functional components of bacterial membranes offering new pathways for therapeutic development. However, further research is needed to assess the comparative effectiveness and safety of these plant-based molecules in relation to traditional membrane-disrupting antibiotics.</p>","PeriodicalId":18599,"journal":{"name":"Microbial pathogenesis","volume":" ","pages":"107723"},"PeriodicalIF":3.5000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial pathogenesis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.micpath.2025.107723","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The global rise in antibiotic resistance and the emergence of infectious diseases have intensified the need for novel antimicrobial therapies. As a result, there is a growing demand to validate the ethnomedicinal claims that plant extracts possess antibacterial properties. This validation requires the characterization of specific phytoconstituents, including anti-infective compounds and antimicrobial peptides. This study explores the progress made in identifying and producing anti-infectives derived from plants, with a focus on their mechanisms of action, current applications, and future potentials. One key area of investigation is the therapeutic potential of phyto-molecules, that target bacterial cell membranes. These molecules which include phenols, alkaloids, terpenoids, saponins, and peptides, have shown significant ability to disrupt bacterial cell membranes through various molecular mechanisms. By impairing membrane integrity, inhibiting efflux pumps, and altering membrane permeability, phyto-molecules offer a novel strategy for combating drug-resistant bacterial strains. This disruption not only enhances the efficacy of conventional antibiotics but also provides standalone antimicrobial activity. In conclusion, phyto-molecules represent a promising solution to overcoming antibiotic resistance, with their ability to target structural and functional components of bacterial membranes offering new pathways for therapeutic development. However, further research is needed to assess the comparative effectiveness and safety of these plant-based molecules in relation to traditional membrane-disrupting antibiotics.
期刊介绍:
Microbial Pathogenesis publishes original contributions and reviews about the molecular and cellular mechanisms of infectious diseases. It covers microbiology, host-pathogen interaction and immunology related to infectious agents, including bacteria, fungi, viruses and protozoa. It also accepts papers in the field of clinical microbiology, with the exception of case reports.
Research Areas Include:
-Pathogenesis
-Virulence factors
-Host susceptibility or resistance
-Immune mechanisms
-Identification, cloning and sequencing of relevant genes
-Genetic studies
-Viruses, prokaryotic organisms and protozoa
-Microbiota
-Systems biology related to infectious diseases
-Targets for vaccine design (pre-clinical studies)