Interplay between pharmacokinetics and immunogenicity of therapeutic proteins: stepwise development of a bidirectional joint pharmacokinetics-anti-drug antibodies model.
Jan-Stefan van der Walt, Justin Wilkins, Akash Khandelwal, Karthik Venkatakrishnan, Wei Gao, Ana-Marija Milenković-Grišić
{"title":"Interplay between pharmacokinetics and immunogenicity of therapeutic proteins: stepwise development of a bidirectional joint pharmacokinetics-anti-drug antibodies model.","authors":"Jan-Stefan van der Walt, Justin Wilkins, Akash Khandelwal, Karthik Venkatakrishnan, Wei Gao, Ana-Marija Milenković-Grišić","doi":"10.1007/s10928-025-09971-w","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of the analysis was to develop a phenomenological longitudinal population pharmacokinetics (PK)-anti-drug antibodies (ADA) model to enable an informed and quantitative framework for assessment of ADA influence. Data used were from seven clinical studies of avelumab across drug development phases in patients with several tumor types. ADA as covariate in a population PK model, and Markov models of ADA status (ADA+ or ADA-) were investigated. Finally, a joint PK-ADA model was developed. In the population PK models that evaluated ADA as a covariate, the clearance increase attributable to ADA+ status was 8.5% (time-varying ADA) to 19.9% (time-invariant ADA with inter-occasion variability in clearance). With a discrete-time Markov model (DTMM), tumor type was identified as a significant covariate on the probability of ADA- to ADA+ transition. When ADA time course predicted by the DTMM model was implemented as a covariate in the population PK model, an increase in avelumab clearance of 11-41% was estimated depending on tumor type. With a continuous-time Markov model (CTMM), in addition to tumor type, baseline ADA status was identified to significantly influence the ADA- to ADA+ transition rate constant. The joint PK-CTMM model estimated the maximal increase in CL due to ADA as 15% and a decrease in ADA- to ADA+ transition rate of up to 37% with increasing avelumab concentration, with 50% of the maximum decrease occurring at 349 µg/mL. The present work established a framework for the assessment of interactions between PK and immunogenicity for therapeutic proteins.</p>","PeriodicalId":16851,"journal":{"name":"Journal of Pharmacokinetics and Pharmacodynamics","volume":"52 3","pages":"33"},"PeriodicalIF":2.2000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12095442/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacokinetics and Pharmacodynamics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10928-025-09971-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of the analysis was to develop a phenomenological longitudinal population pharmacokinetics (PK)-anti-drug antibodies (ADA) model to enable an informed and quantitative framework for assessment of ADA influence. Data used were from seven clinical studies of avelumab across drug development phases in patients with several tumor types. ADA as covariate in a population PK model, and Markov models of ADA status (ADA+ or ADA-) were investigated. Finally, a joint PK-ADA model was developed. In the population PK models that evaluated ADA as a covariate, the clearance increase attributable to ADA+ status was 8.5% (time-varying ADA) to 19.9% (time-invariant ADA with inter-occasion variability in clearance). With a discrete-time Markov model (DTMM), tumor type was identified as a significant covariate on the probability of ADA- to ADA+ transition. When ADA time course predicted by the DTMM model was implemented as a covariate in the population PK model, an increase in avelumab clearance of 11-41% was estimated depending on tumor type. With a continuous-time Markov model (CTMM), in addition to tumor type, baseline ADA status was identified to significantly influence the ADA- to ADA+ transition rate constant. The joint PK-CTMM model estimated the maximal increase in CL due to ADA as 15% and a decrease in ADA- to ADA+ transition rate of up to 37% with increasing avelumab concentration, with 50% of the maximum decrease occurring at 349 µg/mL. The present work established a framework for the assessment of interactions between PK and immunogenicity for therapeutic proteins.
期刊介绍:
Broadly speaking, the Journal of Pharmacokinetics and Pharmacodynamics covers the area of pharmacometrics. The journal is devoted to illustrating the importance of pharmacokinetics, pharmacodynamics, and pharmacometrics in drug development, clinical care, and the understanding of drug action. The journal publishes on a variety of topics related to pharmacometrics, including, but not limited to, clinical, experimental, and theoretical papers examining the kinetics of drug disposition and effects of drug action in humans, animals, in vitro, or in silico; modeling and simulation methodology, including optimal design; precision medicine; systems pharmacology; and mathematical pharmacology (including computational biology, bioengineering, and biophysics related to pharmacology, pharmacokinetics, orpharmacodynamics). Clinical papers that include population pharmacokinetic-pharmacodynamic relationships are welcome. The journal actively invites and promotes up-and-coming areas of pharmacometric research, such as real-world evidence, quality of life analyses, and artificial intelligence. The Journal of Pharmacokinetics and Pharmacodynamics is an official journal of the International Society of Pharmacometrics.