Emma Arnesdotter, Charlotte B A Stoffels, Wiebke Alker, Arno C Gutleb, Tommaso Serchi
{"title":"Per- and polyfluoroalkyl substances (PFAS): immunotoxicity at the primary sites of exposure.","authors":"Emma Arnesdotter, Charlotte B A Stoffels, Wiebke Alker, Arno C Gutleb, Tommaso Serchi","doi":"10.1080/10408444.2025.2501420","DOIUrl":null,"url":null,"abstract":"<p><p>Per- and polyfluoroalkyl substances (PFAS) are persistent synthetic chemicals widely used in industrial and consumer products, leading to environmental contamination and human exposure. This review focuses on perfluoroalkyl acids, a subset of PFAS, which are primarily encountered through diet, including drinking water, and other pathways such as dust ingestion, and dermal contact. Impaired vaccine antibody response has been identified as the most critical effect for risk assessment by the European Food Safety Authority. Furthermore, human epidemiological studies have linked exposure to certain PFAS to various immune-related outcomes, such as asthma, allergies, and inflammatory bowel disease. This review examines potential immunomodulatory effects of perfluoroalkyl acids at the primary sites of exposure: lungs, intestines, and skin, using human epidemiological data as the basis for investigating these impacts. While animal studies are referenced for context, this paper highlights the need for further human-based research to address key questions about PFAS and their immunological impacts. The state of <i>in vitro</i> toxicity testing related to these effects is thoroughly reviewed and critical issues pertaining to this topic are discussed.</p>","PeriodicalId":10869,"journal":{"name":"Critical Reviews in Toxicology","volume":" ","pages":"1-21"},"PeriodicalIF":5.7000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10408444.2025.2501420","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent synthetic chemicals widely used in industrial and consumer products, leading to environmental contamination and human exposure. This review focuses on perfluoroalkyl acids, a subset of PFAS, which are primarily encountered through diet, including drinking water, and other pathways such as dust ingestion, and dermal contact. Impaired vaccine antibody response has been identified as the most critical effect for risk assessment by the European Food Safety Authority. Furthermore, human epidemiological studies have linked exposure to certain PFAS to various immune-related outcomes, such as asthma, allergies, and inflammatory bowel disease. This review examines potential immunomodulatory effects of perfluoroalkyl acids at the primary sites of exposure: lungs, intestines, and skin, using human epidemiological data as the basis for investigating these impacts. While animal studies are referenced for context, this paper highlights the need for further human-based research to address key questions about PFAS and their immunological impacts. The state of in vitro toxicity testing related to these effects is thoroughly reviewed and critical issues pertaining to this topic are discussed.
期刊介绍:
Critical Reviews in Toxicology provides up-to-date, objective analyses of topics related to the mechanisms of action, responses, and assessment of health risks due to toxicant exposure. The journal publishes critical, comprehensive reviews of research findings in toxicology and the application of toxicological information in assessing human health hazards and risks. Toxicants of concern include commodity and specialty chemicals such as formaldehyde, acrylonitrile, and pesticides; pharmaceutical agents of all types; consumer products such as macronutrients and food additives; environmental agents such as ambient ozone; and occupational exposures such as asbestos and benzene.