Effect of Particle Size of Powdered Cellulose Nanofibers as an Additive in the Production of Orally Disintegrating Mini-Tablets by Direct Powder Compression.

IF 1.5 4区 医学 Q4 CHEMISTRY, MEDICINAL
Shohei Nakamura, Maya Shimasaki-Suzuki, Momoka Hamaoka, Ayumi Sakurada, Shinji Akiyama, Takatoshi Sakamoto
{"title":"Effect of Particle Size of Powdered Cellulose Nanofibers as an Additive in the Production of Orally Disintegrating Mini-Tablets by Direct Powder Compression.","authors":"Shohei Nakamura, Maya Shimasaki-Suzuki, Momoka Hamaoka, Ayumi Sakurada, Shinji Akiyama, Takatoshi Sakamoto","doi":"10.1248/cpb.c25-00042","DOIUrl":null,"url":null,"abstract":"<p><p>Mini-tablets (MTs) allow for dosage adjustments according to children's weight and age. However, it is difficult to manufacture MTs with robust physical properties, and various formulation techniques are required. Adding cellulose nanofiber (CNF), a highly functional biomass material, to MTs improved the hardness and disintegration; however, the large variation in the weight and drug content of the resulting MTs remained a challenge. Therefore, this study analyzed the physical properties of CNF-containing MTs of different particle sizes and evaluated the effect of the particle size on MT manufacturing. CNF<sub>300</sub>, with an average particle size of approximately 300 µm, was pulverized to prepare CNF<sub>100</sub>, averaging 100 µm. The formulation included CNF (10, 30, and 50%), lactose hydrate, paracetamol, and magnesium stearate. The pharmaceutical powders mixed were loaded into a rotary tablet press equipped with a 3-mm multiple-tip tooling and compressed at 2, 5, and 8 kN forces. CNF<sub>100</sub>-containing MTs were manufactured via direct powder compression, and they showed lower variations in weight and drug content than those containing CNF<sub>300</sub>. The tensile strength of MTs containing CNF<sub>100</sub> was smaller than that of those containing CNF<sub>300</sub>; however, a strength of ≥1 MPa (corresponding to ≥30 N hardness of a regular tablet) was obtained by setting the compression force to ≥5 kN. The MTs containing 30% CNF<sub>100</sub> disintegrated in ≤30 s, regardless of the compression force. Thus, using smaller CNF particle sizes enabled the manufacturing of an orally disintegrating MT with adequate hardness and disintegration properties while also minimizing variations in MT weight and drug content.</p>","PeriodicalId":9773,"journal":{"name":"Chemical & pharmaceutical bulletin","volume":"73 5","pages":"467-477"},"PeriodicalIF":1.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical & pharmaceutical bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1248/cpb.c25-00042","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Mini-tablets (MTs) allow for dosage adjustments according to children's weight and age. However, it is difficult to manufacture MTs with robust physical properties, and various formulation techniques are required. Adding cellulose nanofiber (CNF), a highly functional biomass material, to MTs improved the hardness and disintegration; however, the large variation in the weight and drug content of the resulting MTs remained a challenge. Therefore, this study analyzed the physical properties of CNF-containing MTs of different particle sizes and evaluated the effect of the particle size on MT manufacturing. CNF300, with an average particle size of approximately 300 µm, was pulverized to prepare CNF100, averaging 100 µm. The formulation included CNF (10, 30, and 50%), lactose hydrate, paracetamol, and magnesium stearate. The pharmaceutical powders mixed were loaded into a rotary tablet press equipped with a 3-mm multiple-tip tooling and compressed at 2, 5, and 8 kN forces. CNF100-containing MTs were manufactured via direct powder compression, and they showed lower variations in weight and drug content than those containing CNF300. The tensile strength of MTs containing CNF100 was smaller than that of those containing CNF300; however, a strength of ≥1 MPa (corresponding to ≥30 N hardness of a regular tablet) was obtained by setting the compression force to ≥5 kN. The MTs containing 30% CNF100 disintegrated in ≤30 s, regardless of the compression force. Thus, using smaller CNF particle sizes enabled the manufacturing of an orally disintegrating MT with adequate hardness and disintegration properties while also minimizing variations in MT weight and drug content.

粉末纤维素纳米纤维粒径对直接粉末压缩生产口腔崩解小片的影响。
迷你片剂(MTs)允许根据儿童的体重和年龄调整剂量。然而,制造具有坚固物理性能的mt是困难的,并且需要各种配方技术。纤维素纳米纤维(CNF)是一种功能优异的生物质材料,它的加入改善了MTs的硬度和崩解性;然而,产生的mt的重量和药物含量的巨大变化仍然是一个挑战。因此,本研究分析了不同粒径含cnf的MT的物理性质,并评估了粒径对MT制造的影响。CNF300的平均粒径约为300µm,将其粉碎制得平均粒径为100µm的CNF100。配方包括CNF(10%, 30%和50%),乳糖水合物,对乙酰氨基酚和硬脂酸镁。将混合的药物粉末装入装有3毫米多尖端工具的旋转压片机中,并以2、5和8千牛的力进行压缩。含有cnf100的mt是通过直接粉末压缩生产的,它们的重量和药物含量的变化比含有CNF300的mt要小。含有CNF100的MTs的抗拉强度小于含有CNF300的MTs;而当压缩力设置为≥5 kN时,得到的强度≥1 MPa(对应于普通片剂硬度≥30 N)。无论压缩力如何,含有30% CNF100的mt在≤30 s内崩解。因此,使用更小的CNF颗粒尺寸可以制造具有足够硬度和崩解性能的口腔崩解MT,同时也可以最大限度地减少MT重量和药物含量的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
132
审稿时长
1.7 months
期刊介绍: The CPB covers various chemical topics in the pharmaceutical and health sciences fields dealing with biologically active compounds, natural products, and medicines, while BPB deals with a wide range of biological topics in the pharmaceutical and health sciences fields including scientific research from basic to clinical studies. For details of their respective scopes, please refer to the submission topic categories below. Topics: Organic chemistry In silico science Inorganic chemistry Pharmacognosy Health statistics Forensic science Biochemistry Pharmacology Pharmaceutical care and science Medicinal chemistry Analytical chemistry Physical pharmacy Natural product chemistry Toxicology Environmental science Molecular and cellular biology Biopharmacy and pharmacokinetics Pharmaceutical education Chemical biology Physical chemistry Pharmaceutical engineering Epidemiology Hygiene Regulatory science Immunology and microbiology Clinical pharmacy Miscellaneous.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信